# DESIGN CALCULATIONS (PROCESS) First Pass

|   | First Pass                                                                                                                                                                                                                                                                    |                |               |                        |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|------------------------|
|   | Plant Capacity                                                                                                                                                                                                                                                                | m3/D<br>m3/hr. | 1000<br>41.67 | For 1 streams          |
|   | Feed Water TDS                                                                                                                                                                                                                                                                | mg/l           | 48,000.00     |                        |
|   | Recovery ratio                                                                                                                                                                                                                                                                | %              | 40.0%         |                        |
|   | System High Pressure @ ro feed                                                                                                                                                                                                                                                | bar            | 72.00         |                        |
|   | RO Plant Feed water requirement                                                                                                                                                                                                                                               | m3/hr.         | 104.2         |                        |
| A | Design of Borewell pump / Intake pumps                                                                                                                                                                                                                                        |                |               |                        |
|   | Raw Water Requirement (max)                                                                                                                                                                                                                                                   | m3/hr.         | 104.2         | as RO Projection       |
|   | Backwash Flow required to fil the BW tank in 8 Hrs                                                                                                                                                                                                                            | m3/hr.         | 7.7           | 7.7                    |
|   | Borewell pump provided (2 numbers provided duty)                                                                                                                                                                                                                              | m3/hr.         | 55.9          | more than the required |
|   |                                                                                                                                                                                                                                                                               |                | ~             | flow                   |
|   | Calculation of pump head                                                                                                                                                                                                                                                      |                | ,0            |                        |
|   | Delivery line from Borewell pump to Raw water tank                                                                                                                                                                                                                            |                |               |                        |
|   | Pump flow                                                                                                                                                                                                                                                                     | m3/hr. 🗸       | 111.9         | 2 duty pumps           |
|   | Considering velocity                                                                                                                                                                                                                                                          | m/s            | 2             |                        |
|   | Required pipe diameter:                                                                                                                                                                                                                                                       | refer.         | 141           |                        |
|   | Provide pipe of diameter:                                                                                                                                                                                                                                                     | Q mm           | 150           | HDPE - 6"              |
|   | Actual velocity                                                                                                                                                                                                                                                               | m/s            | 1.8           | (BY OTHERS)            |
|   | Head loss from B-Well pump to raw water tank (Ref. Attached sheet no. 1 for head loss calculations)  Minimum head required Provide Borewell pump of  Capacity of flow Head  Duty + standby  Raw Water Tank Capacity: Raw Water Requirement Min Retention Time Volume required | •              |               |                        |
|   | Minimum head required Provide Borewell pump of                                                                                                                                                                                                                                | m              | 21.03         | As head loss           |
|   | Capacity of flow                                                                                                                                                                                                                                                              | m/hr           | 55.93         | SP                     |
|   | Head                                                                                                                                                                                                                                                                          | m              | 25            | Grundfos               |
|   | Duty + standby                                                                                                                                                                                                                                                                | Nos            | 2+1           |                        |
| В | Raw Water Tank Capacity:                                                                                                                                                                                                                                                      |                |               |                        |
|   | Raw Water Requirement                                                                                                                                                                                                                                                         | m3/hr.         | 111.9         |                        |
|   | Min Retention Time                                                                                                                                                                                                                                                            | Hours          | 1             |                        |
|   | Volume required                                                                                                                                                                                                                                                               | m3             | 111.87        |                        |
|   | Provide tank of capacity                                                                                                                                                                                                                                                      | m3             | 150           | (By Others)            |
|   | Actual rentention time                                                                                                                                                                                                                                                        | Hours          | 1.34          | ,                      |
|   |                                                                                                                                                                                                                                                                               |                |               |                        |

# DESIGN CALCULATIONS (PROCESS) First Pass

C

| rnst i ass                                                                                                                                | <u> </u>               |          |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|------------------|
| Design of MMF Feed Pump                                                                                                                   |                        |          |                  |
| Pre-treatment feed water requirement                                                                                                      | m3/hr.                 | 104.2    | as RO Projection |
| Backwash flow requirement (to fill the tank)                                                                                              | m3/hr.                 | 7.7      |                  |
| Total Feed flow required                                                                                                                  | m3/hr.                 | 111.9    |                  |
| Calculation of pump head                                                                                                                  |                        |          |                  |
| Suction line from raw water tank to MMF feed pump                                                                                         |                        |          |                  |
| Pump flow                                                                                                                                 | m3/hr.                 | 111.9    |                  |
| Considering velocity                                                                                                                      | m/s                    | 1.5      |                  |
| Required pipe diameter:                                                                                                                   | mm                     | 162      |                  |
| Provide pipe of diameter:                                                                                                                 | mm                     | 150      | uPVC -6"         |
| Actual velocity                                                                                                                           | m/s                    | 1.76     |                  |
|                                                                                                                                           |                        | .07      |                  |
| Head loss from raw water tank to suction of feed pump (Ref.                                                                               |                        |          |                  |
| Attached sheet no.2 for head loss calculations)                                                                                           |                        | ر<br>مار |                  |
| Minimum head required                                                                                                                     | m SV                   | 2.13     | a                |
| Delivery line from MMF feed pump to MMF                                                                                                   | m Sk<br>Maj/hr.<br>m/s |          |                  |
| Pump flow                                                                                                                                 | m3/hr.                 | 111.9    |                  |
| Considering velocity                                                                                                                      | m/s                    | 2.5      |                  |
| Required pipe diameter:                                                                                                                   | mm                     | 126      |                  |
| Provide pipe of diameter:                                                                                                                 | mm                     | 150      | uPVC - 6"        |
| Delivery line from MMF feed pump to MMF  Pump flow Considering velocity Required pipe diameter: Provide pipe of diameter: Actual velocity | m/s                    | 1.8      |                  |
| Head loss from raw water feed pump to MMF (Ref. Attached sheet no. 3 for head loss calculations)  Minimum head required                   |                        |          |                  |
| Minimum head required                                                                                                                     | m                      | 3.43     | b                |
| Head loss calculations in MMF                                                                                                             |                        |          |                  |
| Maximum allowable head loss 55 bar                                                                                                        |                        |          |                  |
| Consider head loss in filter 15 during service flow                                                                                       | m                      | 15       | c                |
| CAL                                                                                                                                       |                        |          |                  |
| 9                                                                                                                                         |                        |          |                  |

# DESIGN CALCULATIONS (PROCESS) <u>First Pass</u>

| Delivery line from MMF outlet to Cartridge Filter inlet                                                                                                                                       |            |            |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|---------------------|
| Pump flow                                                                                                                                                                                     | m3/hr.     | 104.2      |                     |
| Considering velocity                                                                                                                                                                          | m/s        | 2.5        |                     |
| Required pipe diameter:                                                                                                                                                                       | mm         | 121        |                     |
| Provide pipe of diameter:                                                                                                                                                                     | mm         | 150        | uPVC - 6"           |
| Actual velocity                                                                                                                                                                               | m/s        | 1.64       |                     |
| Head loss from MMF to filtered water tank (Ref. Attached sheet                                                                                                                                |            |            |                     |
| no. 4 for head loss calculations)                                                                                                                                                             |            |            |                     |
| Minimum head required                                                                                                                                                                         | m          | 2.36       | d                   |
| Head loss calculations in Cartridge Filter                                                                                                                                                    |            |            |                     |
| Maximum allowable head loss .8 bar                                                                                                                                                            |            | 4          |                     |
| Consider head loss in filter 8 m during service flow                                                                                                                                          | m          |            | e                   |
| Delivery line from Cartridge filter to HPP Suction                                                                                                                                            | c.K        | <b>)</b> ` |                     |
| Pump flow                                                                                                                                                                                     | m3/hr.     | 104.2      |                     |
| Considering velocity                                                                                                                                                                          |            | 2          |                     |
| Required pipe diameter:                                                                                                                                                                       | \ \ \ mm   | 136        |                     |
| Provide pipe of diameter :                                                                                                                                                                    | mm         | 150        | uPVC - 6"           |
| Actual velocity                                                                                                                                                                               | m/s        | 1.64       |                     |
| Head loss from cartridge filter to HPP suction (Ref. Attached                                                                                                                                 |            |            |                     |
| sheet no. 8 for head loss calculations)                                                                                                                                                       |            |            |                     |
| Required pipe diameter: Provide pipe of diameter: Actual velocity Head loss from cartridge filter to HPP suction (Ref. Attached sheet no. 8 for head loss calculations) Minimum head required | m          | 2.34       | f                   |
| 100                                                                                                                                                                                           | ***        | 2.5        | •                   |
| Provide 2 no. of MMF feed pump ( Duty + Stor Spare)                                                                                                                                           |            |            |                     |
| Feed pump                                                                                                                                                                                     | m/hr       | 111.9      | NB                  |
| Head (a+b+c+d+e+f+10)                                                                                                                                                                         | m          | 43         | Grundfoss           |
| , G                                                                                                                                                                                           |            |            |                     |
| Selection of Multi Media Filter (MMF)                                                                                                                                                         |            |            |                     |
| RO feed flow                                                                                                                                                                                  | M3/hr      | 104.17     |                     |
| Actual feed flow including W flow                                                                                                                                                             | m3/hr      | 111.87     |                     |
| Design Velocity                                                                                                                                                                               | m/hr       | 11.00      | 10- 11M/Hr          |
| Surface Area required                                                                                                                                                                         | m2         | 10.17      |                     |
| No of duty media                                                                                                                                                                              | No         | 5.00       | 1 standby filter    |
| Diameter of media filter required                                                                                                                                                             | Meter      | 1.61       |                     |
|                                                                                                                                                                                               | Inch       | 63.35      |                     |
| Media selected                                                                                                                                                                                | Inch       | 63.00      | 63 x 72 MMF         |
| Actual Velocity of filtration                                                                                                                                                                 | Meter/hour | 10.36      | 1.6002              |
| Selection of Backwash Tank                                                                                                                                                                    |            |            |                     |
| Backwash Water Requirement                                                                                                                                                                    | m3/hr.     | 49.5       | Each filter         |
| -                                                                                                                                                                                             | m3/min     | 4.1        | for total MMF       |
| Min Retention Time                                                                                                                                                                            | Minutes    | 15         |                     |
| Volume required                                                                                                                                                                               | m3         | 61.9       |                     |
| Provided tank of capacity                                                                                                                                                                     | m3         | 100        | as per client specs |
| , ,                                                                                                                                                                                           |            |            | •                   |

D

 $\boldsymbol{\mathit{E}}$ 

### **DESIGN CALCULATIONS (PROCESS)**

| First | Pass           |
|-------|----------------|
| LILDE | <b>F a 5 5</b> |

| Media filter surface area                                                                                                                                                                                                                                                     | m2        | 1.98   |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-----------|
| Backwash flow Rate                                                                                                                                                                                                                                                            | m3/hr     | 49.49  |           |
| Backwash duration                                                                                                                                                                                                                                                             | Min       | 15.00  |           |
| R.O. Plant feed water requirement                                                                                                                                                                                                                                             | cu.m/hr.  | 104.17 |           |
| Backwash duration (@ minimum)                                                                                                                                                                                                                                                 | hrs       | 8.00   |           |
| Backwash flow / day                                                                                                                                                                                                                                                           | cu.m./day | 185.60 |           |
| Backwash flow / hr                                                                                                                                                                                                                                                            | cu.m./hr  | 7.73   |           |
| Calculation of pump head                                                                                                                                                                                                                                                      |           | .02    |           |
| Suction line Backwash Pump                                                                                                                                                                                                                                                    |           |        |           |
| Pump flow                                                                                                                                                                                                                                                                     | cu.m/hr.  | 49.49  |           |
| Considering velocity in suction line                                                                                                                                                                                                                                          | m/s       | 1.5    |           |
| Required pipe diameter:                                                                                                                                                                                                                                                       |           | 108    |           |
| Provide pipe of diameter : 5" minimum                                                                                                                                                                                                                                         | mm        | 100    | uPVC - 4" |
| Actual velocity                                                                                                                                                                                                                                                               | m/s       | 1.75   |           |
| Head loss in the suction line backwash pump (Ref. Attached sheet no. 5 for head loss calculations)                                                                                                                                                                            | 4,0       |        |           |
| Minimum head required                                                                                                                                                                                                                                                         | m         | 2.14   | a         |
| Head loss in the suction line backwash pump (Ref. Attached sheet no. 5 for head loss calculations)  Minimum head required  Delivery line backwash pump  Pump flow  Considering velocity in discharge line  Required pipe diameter  Provide pipe of diameter:  Actual velocity | cu.m/hr.  | 49.49  |           |
| Considering velocity in discharge line                                                                                                                                                                                                                                        | m/s       | 2      |           |
| Required pipe diameter                                                                                                                                                                                                                                                        | mm        | 94     |           |
| Provide pipe of diameter:                                                                                                                                                                                                                                                     | mm        | 100    | uPVC - 4" |
|                                                                                                                                                                                                                                                                               |           | 1.75   |           |
| Head loss for discharge pipe from Backwash pump to media inlet (Ref. Attached sheet now for head loss calculations)                                                                                                                                                           | filter    |        |           |
| Minimum head required                                                                                                                                                                                                                                                         | m         | 5.58   | b         |
| Head loss for discharge pipe from media filter to drain (Ref.                                                                                                                                                                                                                 |           |        |           |
| Attached sheet no. 7 for head loss calculations)                                                                                                                                                                                                                              |           |        |           |
| Minimum head required                                                                                                                                                                                                                                                         | m         | 2.91   | c         |
| Head loss calculations in Media filters                                                                                                                                                                                                                                       |           |        |           |
| Maximum allowable head loss- 1 bar                                                                                                                                                                                                                                            |           |        |           |
| Hence consider head loss in filter as 10m                                                                                                                                                                                                                                     | m         | 10     | d         |
| Backwash Pump Head                                                                                                                                                                                                                                                            | m         | 20.64  |           |
| (a+b+c+d)                                                                                                                                                                                                                                                                     |           |        |           |
| Provide 1 no. Backwash water pump of                                                                                                                                                                                                                                          |           |        |           |
| · · · · · · · · · · · · ·                                                                                                                                                                                                                                                     |           |        |           |

### **DESIGN CALCULATIONS (PROCESS)**

First Pass

|                                                                                      | <u>1 11 5t 1 a55</u> |             |                                                       |
|--------------------------------------------------------------------------------------|----------------------|-------------|-------------------------------------------------------|
| Head                                                                                 | m                    | 21          | NB                                                    |
| Air Coouring Blower Coloulation                                                      |                      |             |                                                       |
| Air Scouring Blower Calculation Feed flow during normal service                      | $m^3/h$              | r 111.8     | 27                                                    |
| Design Filtration velocity                                                           |                      |             |                                                       |
| ·                                                                                    | $m^3/m^2$            |             |                                                       |
| Air scour velocity                                                                   | $m^3/m^2$            |             |                                                       |
| Filtration area each filter                                                          | $M^2$                | 1.9         |                                                       |
| Air scour rate required @ 0.5 bar                                                    | m <sup>3</sup> /h    | r 51.4      | <mark>.7</mark>                                       |
| Selection of Cartridge Filter                                                        | micro                | n 5         |                                                       |
| Feed Flow                                                                            | m3/h                 | r 104.17    |                                                       |
| Flow each 2.5"x40" - 5 Micron cartridge filter                                       | M3/ł                 |             |                                                       |
| No of Cartridge filters                                                              | Nos                  |             |                                                       |
| CE1 ' 1 CE                                                                           | Nos                  | 9.00        |                                                       |
| No of CF housing                                                                     | Nos                  | 2.89        |                                                       |
| CF selected                                                                          | Nos                  | 3.00        | 1 standby                                             |
| Coloction of Buseause Evolutions (FBI)                                               | PA                   |             |                                                       |
| Selection of Pressure Exchanger (ERI) PX model                                       | 4.                   | PX-140S     | (Ref. ERI design)                                     |
| Number of units                                                                      | 4.                   | 3           | (Ref. ERI design)                                     |
| PX unit flow                                                                         | m3/h                 | r 20.8      |                                                       |
| Low pressure Inlet                                                                   | bar                  | 1.6         |                                                       |
| High Pressure Outlet                                                                 | bar                  | 70.0        |                                                       |
| High pressure Inlet                                                                  | bar                  | 70.5        |                                                       |
| Low Pressure Outlet                                                                  | bar                  | 1.0         |                                                       |
| PX efficiency                                                                        | %                    | 95.0%       |                                                       |
| Operating capacity                                                                   | %                    | 65.5%       |                                                       |
| <b>V</b> .                                                                           | m3/h bar bar bar bar |             | (D. C.EDI I .                                         |
| Selection of PX Booster Pump                                                         |                      |             | (Ref. ERI design projection)                          |
| ERT I A booster model                                                                | 50 H                 |             | projection                                            |
| Number of units                                                                      | 0/                   | 2           |                                                       |
| PX booster efficiency                                                                | %                    | 64%         |                                                       |
| Motor Efficiency Total PX booster flow rate                                          | %<br>2/l             | 91%         |                                                       |
|                                                                                      | m3/h                 |             |                                                       |
| Inlet Pressure                                                                       | bar                  | 70.0        |                                                       |
| Outlet Pressure                                                                      | bar                  | 72.0        |                                                       |
| Differential pressure                                                                | bar                  | 2.0         |                                                       |
| Total booster power                                                                  | kW                   | 5.8         |                                                       |
|                                                                                      |                      |             |                                                       |
| Selection of High Presssure Pump                                                     |                      |             |                                                       |
| Selection of High Pressure Pump  Max. inlet pressure required at the RO Plant module | bar                  | 72.00       | ,                                                     |
| Max. inlet pressure required at the RO Plant module                                  | bar                  | 72.00       | (Ref. RO Membran design projection)                   |
| _                                                                                    | bar<br>m3            | 72.00<br>44 | (Ref. RO Membrandesign projection)  Membrane Projectn |

### <u>DESIGN CALCULATIONS (PROCESS)</u> <u>First Pass</u>

| Design of Reverse Osmosis Module Membrane - Hydranautics- SWC5 MAX                                                                                                                                                         | no<br>no       | 7ele x 6nos<br>84 | (Ref. Membran design projection |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|---------------------------------|
| Pressure Vessel                                                                                                                                                                                                            | no             | 12                | For each 500 m                  |
| membrane per vessel                                                                                                                                                                                                        | no             | 7                 |                                 |
|                                                                                                                                                                                                                            |                |                   | _                               |
| <u>Design of HPP Discharge Pipeline</u>                                                                                                                                                                                    |                |                   |                                 |
| Pump flow                                                                                                                                                                                                                  | m3/hr          | 43.9              |                                 |
| Considering velocity in pipeline                                                                                                                                                                                           | m/s            | 3                 |                                 |
| Required pipe diameter:                                                                                                                                                                                                    | mm             | 72                |                                 |
| Provide pipe of diameter:                                                                                                                                                                                                  | mm             | 80                | DSS - 3"                        |
| Actual velocity                                                                                                                                                                                                            | m/s            | 2.43              |                                 |
| Design of Reject Pipeline                                                                                                                                                                                                  |                | <sup>1</sup> /0,  |                                 |
| System flow                                                                                                                                                                                                                | m3/hr_ <b></b> | 62.50             | Membrane Proj                   |
| Considering velocity in pipeline                                                                                                                                                                                           |                | 2.5               | Wiemorane Proj                  |
|                                                                                                                                                                                                                            | m/s 5          | 2.3<br>94         |                                 |
| Provide pipe of diameter:                                                                                                                                                                                                  | n in           | 100               | DSS - 4"                        |
| A strail releasity                                                                                                                                                                                                         | V min          |                   | DSS - 4                         |
| Actual velocity                                                                                                                                                                                                            | m/s            | 2.21              |                                 |
| Design of PX booster Pump suction pipeline                                                                                                                                                                                 |                |                   |                                 |
| Pump flow                                                                                                                                                                                                                  | m3/hr          | 62.50             | Membrane Proj                   |
| Considering velocity in pipeline                                                                                                                                                                                           | m/s            | 2.5               |                                 |
| Required pipe diameter:                                                                                                                                                                                                    | mm             | 94                |                                 |
| Provide pipe of diameter:                                                                                                                                                                                                  | mm             | 100               | DSS - 4"                        |
| Required pipe diameter: Provide pipe of diameter: Actual velocity  Design of PX booster Pump suction pipeline Pump flow Considering velocity in pipeline Required pipe diameter: Provide pipe of diameter: Actual velocity | m/s            | 2.21              |                                 |
| Design of PX booster Pump Discharge ppeline                                                                                                                                                                                |                |                   |                                 |
| Pump flow                                                                                                                                                                                                                  | m3/hr          | 62.50             |                                 |
| Considering velocity in pipeline                                                                                                                                                                                           | m/s            | 2.5               |                                 |
| Required pipe diameter:                                                                                                                                                                                                    | mm             | 94                |                                 |
| Provide pipe of diameter:                                                                                                                                                                                                  | mm             | 100               | DSS - 4"                        |
| Actual velocity                                                                                                                                                                                                            | m/s            | 2.21              | D00 1                           |
| Decion of High Burn quotion ningling                                                                                                                                                                                       |                |                   |                                 |
| <u>Design of High Pump suction pipeline</u><br>Pump flow                                                                                                                                                                   | m3/hr          | 43.94             |                                 |
| Considering velocity in pipeline                                                                                                                                                                                           | m/s            | 2                 |                                 |
| Required pipe diameter:                                                                                                                                                                                                    | mm             | 88                |                                 |
| Provide pipe of diameter:                                                                                                                                                                                                  | mm             | 100               | UPVC - 4"                       |
| Actual velocity                                                                                                                                                                                                            | m/s            | 1.55              |                                 |
|                                                                                                                                                                                                                            |                |                   |                                 |
| <u>Design of permeate pipeline</u>                                                                                                                                                                                         | 2.7            | 44                |                                 |
| System flow                                                                                                                                                                                                                | m3/hr          | 41.67             |                                 |
| Considering velocity in pipeline                                                                                                                                                                                           | m/s            | 1.5               |                                 |
| Required pipe diameter:                                                                                                                                                                                                    | mm             | 99                |                                 |
| Provide pipe of diameter:                                                                                                                                                                                                  | mm             | 100               | uPVC - 4"                       |

## **DESIGN CALCULATIONS (PROCESS)**

| Firs | st P | ass |
|------|------|-----|
|      |      |     |

|            | <u>F</u>                                                                                                                                                              | <u>irst Pass</u>                 |             |           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|-----------|
|            | Actual velocity                                                                                                                                                       | m/s                              | 1.47        |           |
| M          | <b>Design of Flushing Tank</b> Flushing volume required = volume of pressure tube wit membranes + residual solution in cleaning tank + vol. In interconnecting piping | h soaked                         |             |           |
|            | Volume / soaked membrane                                                                                                                                              | Ltrs<br>m3                       | 68<br>0.068 |           |
|            | VoL.of pressure tube with soaked memb                                                                                                                                 | m3                               | 5.9976      |           |
|            | Pipe line size (Dia)                                                                                                                                                  | mm                               | 100         |           |
|            | Pipe line size (Radius)                                                                                                                                               | m                                | 0.05        |           |
|            | Overall length of all interconnecting pipes                                                                                                                           | m                                | 519         |           |
|            | Volume of interconnecting pipe                                                                                                                                        | m3                               | 03925       |           |
|            | volume of interconnecting pipe                                                                                                                                        | m3                               | 6.39        |           |
|            | Flush tank volume required                                                                                                                                            |                                  |             |           |
|            |                                                                                                                                                                       | Gallons                          | 1686.9864   |           |
|            | Flushing tank volume Designed / Provided                                                                                                                              |                                  | 10.00       |           |
|            |                                                                                                                                                                       | gallons<br>gpm<br>m3/hr<br>m3/hr | 2642        |           |
| <b>A</b> 7 | Decima of these access                                                                                                                                                | 4                                |             |           |
| N          | Design of flush pump                                                                                                                                                  |                                  | 2642        |           |
|            | Total volume to be flushed out 100% in 5mins                                                                                                                          | gallons                          | 2642<br>528 |           |
|            | Flow                                                                                                                                                                  | gpm<br>m3/hr                     | 120.01      |           |
|            | Flush flow rate selected                                                                                                                                              | m3/hr                            | 120.01      |           |
|            | Calculation of pump head:                                                                                                                                             | 1113/111                         | 120         |           |
|            | Suction line from flush tank to flush pump suction                                                                                                                    |                                  |             |           |
|            | Pump flow                                                                                                                                                             | cu.m/hr.                         | 120         |           |
|            | Considering velocity 2 m/s. in pump discharge line                                                                                                                    | m/s                              | 2           |           |
|            | Required pipe diameter:                                                                                                                                               | mm                               | 146         |           |
|            | Provide pipe of diameter :                                                                                                                                            | mm                               | 150         | uPVC - 6" |
|            | Actual velocity                                                                                                                                                       | m/s                              | 1.89        |           |
|            | Head loss flush tank to flush pump suction (Ref.Attached no.9 for head loss calculations)                                                                             | l sheet                          |             |           |
|            | Minimum head required                                                                                                                                                 | m                                | 1.73        | a         |
|            |                                                                                                                                                                       |                                  |             |           |
|            | Delivery line from flush pump to RO suction (outlet of                                                                                                                | *                                |             |           |
|            | Pump flow (max)                                                                                                                                                       | cu.m/hr.                         | 120         |           |
|            | Considering velocity in pump discharge line                                                                                                                           | m/s                              | 2.5         |           |
|            | Required pipe diameter.                                                                                                                                               | mm                               | 130         | "DVC 6"   |
|            | Provide pipe of diameter :                                                                                                                                            | mm<br>m/s                        | 150<br>1.89 | uPVC - 6" |
|            | Actual velocity Head loss flush pump delivery to pressure vessels (Ref.A                                                                                              | m/s<br>ttached                   | 1.09        |           |
|            | sheet no.10 for head loss calculations)                                                                                                                               | aciicu                           |             |           |
|            | ,                                                                                                                                                                     |                                  | 4.25        |           |
|            | Minimum head required                                                                                                                                                 | m                                | 4.35        | b         |

# DESIGN CALCULATIONS (PROCESS) First Pass

| <u>First Pass</u>                                            |                               |             |            |
|--------------------------------------------------------------|-------------------------------|-------------|------------|
| Head loss calculations in Pressure vessels                   |                               |             |            |
| Maximum allowable head loss 1 bar                            |                               |             |            |
| Consider head loss in Pressure vessels 10 m                  | m                             | 10          | c          |
| Head loss Delivery from RO to Brine pit                      |                               |             |            |
| Pump flow (max)                                              | cu.m/hr.                      | 120         |            |
| Considering velocity in pump discharge line                  | m/s                           | 2           |            |
| Required pipe diameter.                                      | mm                            | 146         |            |
| Provide pipe of diameter:                                    | mm                            | 150         |            |
| Actual velocity                                              | m/s                           | 1.89        |            |
| Head loss from RO to Brine pit (Ref.Attached sheet no.11 for |                               |             |            |
| head loss calculations)                                      |                               | 4           |            |
| Minimum head required                                        | m                             | <b>2</b> 49 | d          |
|                                                              | . (                           |             |            |
| Provide 1 no. flush pump of                                  | 2/1.6                         | 120.00      | C 16       |
| Capacity  Head Beginned main insuran                         | m3/ni                         | 120.00      | Grundfos   |
| Head Required minimum                                        | m3/h5k                        | 19          |            |
|                                                              | $\langle Q_{\lambda} \rangle$ |             |            |
| Design of CIP Tank                                           | 12                            |             |            |
|                                                              | ,                             |             |            |
|                                                              |                               |             |            |
| interconnecting piping                                       |                               |             |            |
|                                                              | Ltrs                          | 68          |            |
| Volume / soaked membrane                                     | m3                            | 0.068       |            |
| Vol.of pressure tube with soaked memb                        | m3                            | 5.9976      | DOW MANUAL |
| Pipe line size (Dia)                                         | mm                            | 150         |            |
| Pipe line size (Radius)                                      | m                             | 0.075       |            |
| Overall length of all interconnecting pipes                  | m                             | 50          |            |
| Volume of interconnecting pioe                               | m3                            | 0.883125    |            |
|                                                              | m3                            | 6.88        |            |
| CIP tank volume required                                     | Gallons                       | 1816.5114   |            |
| <b>3</b>                                                     | m3                            | 10.00       |            |
| CIP tank volume Designed / Provided                          |                               |             |            |
|                                                              | Gallons                       | 2642        |            |
| Design of CIP pump                                           |                               |             |            |
| Total volume to be recycled 100% in 5mins                    | gallons                       | 2642        |            |
| ·                                                            | •                             | 528         |            |
| Flow                                                         | gpm<br>m3/hr                  | 120.01      |            |
| Cleaning flow rate selected                                  | m3/hr                         | 45          |            |
| Calculation of pump head:                                    | 1113/111                      | 1.5         |            |
| Suction line from CIP tank to CIP pump suction               |                               |             |            |
| Pump flow                                                    | cu.m/hr.                      | 120         |            |
| Considering velocity 1 m/s. in pump discharge line           | m/s                           | 2           |            |
| Required pipe diameter:                                      | mm                            | 146         |            |
| Todaman biba minimani .                                      | 111111                        | 110         |            |

0

P

# DESIGN CALCULATIONS (PROCESS) First Pass

| <u>Fi</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rst Pass |      |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----------|
| Provide pipe of diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm       | 100  | uPVC - 4" |
| Actual velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m/s      | 4.24 |           |
| Head loss CIP tank to CIP pump suction (Ref.Attached sh no.12 for head loss calculations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eet      |      |           |
| Minimum head required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m        | 2.64 | a         |
| D. F L CID 4. CID E.H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |           |
| <b>Delivery line from CIP pump to CIP Filter</b> Pump flow (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cu.m/hr. | 120  |           |
| Considering velocity in pump discharge line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m/s      | 2    |           |
| Required pipe diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mm       | 146  |           |
| Provide pipe of diameter :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm       | 150  | uPVC - 6" |
| Actual velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m/s      | 150  | ur ve-o   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |      |           |
| no.13 for head loss calculations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | //   |           |
| Minimum head required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m c      | 2.68 | b         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 2.00 | ~         |
| Head loss calculations in cleaning cartridge filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |      |           |
| Maximum allowable head loss 0.75 bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | '6,      |      |           |
| Hence considered head loss in filter as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m m      | 7.5  | c         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.       |      |           |
| Delivery line from cleaning cartridge filter to RO System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |           |
| Pump flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cu m/hr  | 120  |           |
| Considering velocity in pump discharge line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m/s      | 2.5  |           |
| Required pipe diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mm       | 130  |           |
| Provide pipe of diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm       | 150  | uPVC - 6" |
| Actual velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m/s      | 1.89 |           |
| Head loss CIP pump delivery to CIP Filter (Ref.Attached no.13 for head loss calculations) Minimum head required  Head loss calculations in cleaning cartridge filter Maximum allowable head loss 0.75 bar Hence considered head loss in filter as  Delivery line from cleaning cartridge filter to RO System Pump flow Considering velocity in pump discharge line Required pipe diameter Provide pipe of diameter: Actual velocity Head loss from cleaning cartridge filter to R.O. System (Ref.Attached sheet no.14 for head loss calculations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      |           |
| Minimum head required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m        | 2.68 | d         |
| Head loss calculations in R System for cleaning operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation    |      |           |
| Head loss calculations in R System for cleaning operations and system for cleaning operations are supported by the system | m        | 10   | e         |
| Recirculation line from R.O. System in cleaning tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           |
| Pump flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cu.m/.hr | 120  |           |
| Considering velocity pump discharge line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m/s      | 2.5  |           |
| Required pipe diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mm       | 130  |           |
| Provide pipe of diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm       | 150  | uPVC - 6" |
| Actual velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m/s      | 1.89 |           |
| Head loss from recirculation line from RO System to cle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aning    |      |           |
| tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           |
| (Ref. Attached sheet no.15 for head loss calculation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |           |
| Minimum head required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m        | 1.75 | f         |
| Hence total pumping head required for cleaning pump:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111      | 1.75 | •         |
| roun pamping near required for vicaning pamp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |

### **DESIGN CALCULATIONS (PROCESS)**

### First Pass

Total head loss from cleaning tank to suction of cleaning pump + pressure loss from cleaning pump to Cleaning cartridge filter + pressure loss across cleaning cartridge filter + head loss from cleaning cartridge filter to R.O. System + head loss across m

|                        | a+b+c+d+e+f                                                                                                                                                                                                                                                                                                                                                                                                                             | m      | 28.0   |                     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------------------|
|                        | Provide 1 no. cleaning pump of                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |                     |
|                        | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                | m3/hr  | 120    | Grundfos            |
|                        | Minimum head required                                                                                                                                                                                                                                                                                                                                                                                                                   | m      | 28     | Grundfos            |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |                     |
| $\boldsymbol{\varrho}$ | Selection of Cleaning Cartridge Filter                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |                     |
|                        | Feed Flow                                                                                                                                                                                                                                                                                                                                                                                                                               | m3/hr  | 120    |                     |
|                        | Max. flow handled by Dia 2.5" x 40"X long 9 nos cartridge of 5 micron nominal rating                                                                                                                                                                                                                                                                                                                                                    | m3/hr  | 1000   |                     |
|                        | Hence no. of cartridge required                                                                                                                                                                                                                                                                                                                                                                                                         | 6      | 4.00   |                     |
|                        | No. of 2.5" x 40" x 7 Cartridge provided                                                                                                                                                                                                                                                                                                                                                                                                | 5      | 4.00   | considered UPVC     |
|                        | Max Feed flow that can be handled                                                                                                                                                                                                                                                                                                                                                                                                       |        | 120    | make filters        |
|                        | Max Feed flow that can be handled                                                                                                                                                                                                                                                                                                                                                                                                       | OP.    | 120    | make miers          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4      |        |                     |
|                        | Max. flow handled by Dia 2.5" x 40"X long 9 nos cartridge of 5 micron nominal rating  Hence no. of cartridge required  No. of 2.5" x 40" x 7 Cartridge provided  Max Feed flow that can be handled  SECOND PASS  Plant Capacity  Plant Capacity  Blending from first pass  Permeate from Second pass  Brine recirculation from pass 2  Feed Water TDS  Recovery ratio  System High Pressure @ ro feed  PO Plant Food water requirements |        |        |                     |
|                        | Plant Capacity                                                                                                                                                                                                                                                                                                                                                                                                                          | m3/D   | 1000   | 1 x 100 m3 stream   |
| R                      | Plant Capacity                                                                                                                                                                                                                                                                                                                                                                                                                          | m3/hr. | 41.67  | 20.86 / stream      |
|                        | Blending from first pass                                                                                                                                                                                                                                                                                                                                                                                                                | m3/hr. | 0.00   |                     |
|                        | Permeate from Second pass                                                                                                                                                                                                                                                                                                                                                                                                               | m3/hr. | 41.67  |                     |
|                        | Brine recirculation from pass 2                                                                                                                                                                                                                                                                                                                                                                                                         | m3/hr. | 0      |                     |
|                        | Feed Water TDS                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/l   | 500.00 |                     |
|                        | Recovery ratio                                                                                                                                                                                                                                                                                                                                                                                                                          | %      | 90.0%  |                     |
|                        | System High Pressure @ ro feed                                                                                                                                                                                                                                                                                                                                                                                                          | bar    | 10.00  |                     |
| S                      | RO Plant Feed water requirement                                                                                                                                                                                                                                                                                                                                                                                                         | m3/hr. | 46.30  |                     |
|                        | Total feed flow                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 46.30  | (Ref. RO Membrane   |
|                        | SA.                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        | design projection)  |
|                        | Intermedeate Water Tank Capacity:                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |                     |
|                        | Feed Water Flow                                                                                                                                                                                                                                                                                                                                                                                                                         | m3/Hr  | 46.30  |                     |
|                        | Min Retention Time                                                                                                                                                                                                                                                                                                                                                                                                                      | Min    | 5      |                     |
|                        | Volume required                                                                                                                                                                                                                                                                                                                                                                                                                         | Gal    | 1019   | (Ref. Membrane      |
|                        | Provide tank of capacity                                                                                                                                                                                                                                                                                                                                                                                                                | Gal    | 1000   | design projections) |
|                        | Actual rentention time                                                                                                                                                                                                                                                                                                                                                                                                                  | Min    | 4.9    | & 1 J /             |
|                        | Selection of High Presssure Pump                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |                     |
|                        | Max. inlet pressure required at the RO Plant module                                                                                                                                                                                                                                                                                                                                                                                     | bar    | 10     |                     |
|                        | Select one number of HPP                                                                                                                                                                                                                                                                                                                                                                                                                |        | 10     |                     |
|                        | capcaity                                                                                                                                                                                                                                                                                                                                                                                                                                | m3     | 46.30  |                     |
|                        | pressure                                                                                                                                                                                                                                                                                                                                                                                                                                | bar    | 18     |                     |
|                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |                     |

# DESIGN CALCULATIONS (PROCESS) First Pass

| Design of Reverse Osmosis Module   | no  | 7ele x 6nos |
|------------------------------------|-----|-------------|
| Membrane - Hydranautics - SWC5 MAX | no  | 42          |
| Pressure Vessel                    | no  | 6           |
| membrane per vessel                | no  | 7           |
| Pressure Rating Minimum            | psi | 600         |

SAMPLE COPY-EXCEL FILE ON PAID SECTION

#### Sheet No. 1 Head Loss Calculation

| Head loss calculation for          | = | Borewell pump to Raw Water Tank |
|------------------------------------|---|---------------------------------|
| Flow (cum/hr)                      | = | 111.9 m3/hr                     |
| Diameter (mm)                      | = | 150 mm                          |
| Hence, velocity (m/sec)            | = | 1.76 m/sec                      |
| Constant C                         | = | 130                             |
| Straight length (m)                | = | 200 m                           |
| Static head (m)                    | = | 15 m                            |
| Velocity Head (v <sup>2</sup> /2g) | = | 0.16 m                          |

### **Head Loss In Fittings**

| Fitting                | Quantity | Reynolds Factor | Head Loss (kv <sup>2</sup> /2g) |
|------------------------|----------|-----------------|---------------------------------|
|                        |          |                 | 4                               |
| Elbows, 90 deg         | 5        | 0.29            | 0.229                           |
| Elbows, 45 deg         | 3        | 0.14            | 0.066                           |
| Sudden contraction     | 2        | 0.88            | 0.277                           |
| Sudden engl.           | 2        | 1.76            | 0.554                           |
| Tee-90 deg             | 1        | 0.35            | 0.055                           |
| Valves                 | 3        | 0.25            | 0.118                           |
| NRV                    | 1        | and the second  | 0.315                           |
| Strainer (approximate) | 0        | 475             | 0.000                           |
| Exit                   | 1        | 0.75            | 0.118                           |
| Total                  |          | X Y             | 1.733                           |

#### **Friction Loss in Pipes**

| According to the Empirical formula | ae for the calculator of friction                 | loss: |                      |
|------------------------------------|---------------------------------------------------|-------|----------------------|
| Friction head loss                 | $=6.78 \text{ (v/G)}^{1.852} \text{(D)}^{-1.165}$ | =     | <b>0.0213813</b> m/m |
|                                    | , C <sub>O</sub>                                  |       |                      |
| Therefore friction loss in pipe    | 200                                               | =     | <b>4.28</b> m        |
| Total Head Loss (m)                | (Loss in Fittings +                               | =     | 6.03 m               |
| Minimum Head Required              | (Total Head Loss +                                | =     | <b>21.03</b> m       |

#### Sheet No. 2 Head Loss Calculation

| 1  | Head loss calculation for                                                                                                         | :                                     | Raw water ta    | nk to Suction of MMF feed pump                                                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|-----------------------------------------------------------------------------------------------|
| 3  | Flow (cum/hr)                                                                                                                     | =                                     | 111.87 m3/l     | ır                                                                                            |
| 4  | Diameter (mm)                                                                                                                     | =                                     | 150 mm          |                                                                                               |
| 5  | Hence, velocity (m/sec)                                                                                                           | =                                     | 1.76 m/se       | ec                                                                                            |
| 6  | Constant C                                                                                                                        | =,                                    | 120             |                                                                                               |
| 7  | Straight length (m)                                                                                                               | =                                     | 5 m             |                                                                                               |
| 8  | Static head (m)                                                                                                                   | =                                     | 1 m             |                                                                                               |
| 9  | Velocity Head $(v^2/2g)$                                                                                                          | =                                     | 0.16 m          |                                                                                               |
| 10 |                                                                                                                                   |                                       |                 |                                                                                               |
| 11 | <b>Head Loss In Fittings</b>                                                                                                      |                                       |                 |                                                                                               |
| 12 |                                                                                                                                   |                                       |                 |                                                                                               |
| 13 | Fitting                                                                                                                           | Quantity                              | Reynolds Factor | Head Loss (kv <sup>2</sup> /2g)                                                               |
| 14 |                                                                                                                                   |                                       |                 |                                                                                               |
| 15 | Elbows, 90 deg                                                                                                                    | 3                                     | 0.29            | 0.137                                                                                         |
| 16 | Elbows, 45 deg                                                                                                                    | 2                                     | 0.14            | 0.044                                                                                         |
| 17 | Sudden contraction                                                                                                                | 1                                     | 0.88            | 0.137<br>0.044<br>0.139<br>0.277<br>0.110<br>0.158<br>0.000<br>0.000<br>0.118<br><b>0.983</b> |
| 18 | Sudden engl.                                                                                                                      | 1                                     | 1.76            | 0.277                                                                                         |
| 19 | Tee-90 deg                                                                                                                        | 2                                     | 0.35            | 0.110                                                                                         |
| 00 | Valves                                                                                                                            | 4                                     | 0.2             | 0.158                                                                                         |
| 20 |                                                                                                                                   |                                       | 70              |                                                                                               |
| 21 | NRV                                                                                                                               | 0                                     | 2               | 0.000                                                                                         |
| 22 | Strainer (approximate)                                                                                                            | 0                                     | 75              | 0.000                                                                                         |
| 23 | Exit                                                                                                                              | 1                                     | 0.75            | 0.118                                                                                         |
| 24 | Total                                                                                                                             | 70,                                   |                 | 0.983                                                                                         |
| 25 |                                                                                                                                   | 4)                                    |                 |                                                                                               |
| 26 | Friction Loss in Pipes                                                                                                            | 4,                                    |                 |                                                                                               |
| 27 | According to the Empirical formu                                                                                                  | lae for the calculation of fri        | iction loss:    |                                                                                               |
| 28 | Friction Loss in Pipes According to the Empirical formula Friction head loss  Therefore friction loss in pipe Total Head Loss (m) | $= 6.78$ C) $^{1.852}$ (D) $^{-1.16}$ | 5 =             | <b>0.025</b> m/m                                                                              |
| 29 |                                                                                                                                   |                                       |                 |                                                                                               |
| 30 | Therefore friction loss in nine                                                                                                   | 5                                     | =               | <b>0.12</b> m                                                                                 |
| 31 | CALL                                                                                                                              | , J                                   |                 | W112 III                                                                                      |
| 32 | Total Head Loss (m)                                                                                                               | (Loss in Fittings +                   | =               | 1.13 m                                                                                        |
| 33 | = ()                                                                                                                              | (85                                   |                 | , <u></u> -                                                                                   |
| 34 | Minimum Head Required                                                                                                             | (Total Head Loss +                    | =               | <b>2.13</b> m                                                                                 |

#### Sheet No. 3 Head Loss Calculation

| 1        | Head loss calculation for          | :                                          | Raw                                   | Water feed pump to MMF                                                                 |
|----------|------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------|
| 2        |                                    |                                            |                                       |                                                                                        |
| 3        | Flow (cum/hr)                      | =                                          | 111.87 m3                             |                                                                                        |
| 4        | Diameter (mm)                      | =                                          | 150 mr                                |                                                                                        |
| 5        | Hence, velocity (m/sec)            | =                                          | 1.76 m/s                              | sec                                                                                    |
| 6        | Constant C                         | =                                          | 120                                   |                                                                                        |
| 7        | Straight length (m)                | =                                          | 3 m                                   |                                                                                        |
| 8        | Static head (m)                    | =                                          | 2 m                                   |                                                                                        |
| 9        | Velocity Head (v <sup>2</sup> /2g) | =                                          | 0.16 m                                |                                                                                        |
| 10       |                                    |                                            |                                       |                                                                                        |
| 11       | <b>Head Loss In Fittings</b>       |                                            |                                       |                                                                                        |
| 12       |                                    |                                            |                                       |                                                                                        |
| 13       | Fitting                            | Quantity                                   | Reynolds Factor                       | Head Loss (kv²/2g)                                                                     |
|          |                                    |                                            | (k)                                   | 0.229<br>0.066<br>0.139<br>0.277<br>0.110<br>0.079<br>0.315<br>0.000<br>0.118<br>1.333 |
| 14       |                                    | _                                          | 0.00                                  |                                                                                        |
| 15       | Elbows, 90 deg                     | 5                                          | 0.29                                  | 0.229                                                                                  |
| 16       | Elbows, 45 deg                     | 3                                          | 0.14                                  | 0.066                                                                                  |
| 17       | Sudden contraction                 | 1                                          | 0.88                                  | 0.139                                                                                  |
| 18       | Sudden engl.                       | 1                                          | 1./6                                  | 0.2//                                                                                  |
| 19       | Tee-90 deg                         | 2                                          | 0.35                                  | 0.110                                                                                  |
| 20       | Valves<br>NRV                      | <u> </u>                                   | 0.2                                   | 0.079                                                                                  |
| 21<br>22 |                                    | 1                                          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0.313                                                                                  |
| 23       | Strainer (approximate)<br>Exit     | 0                                          | 0.75                                  | 0.000                                                                                  |
| 24       | Total                              | 1                                          | 0.73                                  | 0.110<br>1 222                                                                         |
| 25       | Total                              |                                            | $\triangleright$                      | 1.555                                                                                  |
| 26       | Friction Loss in Pipes             | (C)                                        |                                       |                                                                                        |
| 27       | According to the Empirical formu   | lae for the calculator of fr               | iction loss:                          |                                                                                        |
| 28       | Friction head loss                 | = 6.79 (y/C) (1.852 (D) -1.16              | 65 =                                  | <b>0.025</b> m/m                                                                       |
|          | Theman neua loss                   | -0.78 (V/G) (D)                            |                                       | 0.020 mm                                                                               |
| 29       |                                    | cO,                                        |                                       |                                                                                        |
| 30       | Therefore friction loss in pipe    | 3                                          | =                                     | <b>0.07</b> m                                                                          |
| 31       |                                    |                                            |                                       |                                                                                        |
| 20       | Total Head Loss (m)                | (Loss in Fittings +                        | =                                     | 1.43 m                                                                                 |
| 32       |                                    | Friction Loss in pipe)                     |                                       |                                                                                        |
| 33       | St                                 | (Loss in Fittings + Friction Loss in pipe) |                                       |                                                                                        |
| ٠.       | Minimum Head Required              | (Total Head Loss +                         | =                                     | <b>3.43</b> m                                                                          |
| 34       | 1                                  | Static Head)                               |                                       |                                                                                        |
|          |                                    | ,                                          |                                       |                                                                                        |

#### Sheet No. 4 Head Loss Calculation

| 1        | Head loss calculation for          | :                                                 | MMF o                           | utlet to Cartridge Filter inlet                                                 |
|----------|------------------------------------|---------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------|
| 3        | Flow (cum/hr)                      | =                                                 | 104.17 m3/                      | hr                                                                              |
| 4        | Diameter (mm)                      | =                                                 | 150 mm                          |                                                                                 |
| 5        | Hence, velocity (m/sec)            | =                                                 | 1.64 m/s                        | ec                                                                              |
| 6        | Constant C                         | =                                                 | 120                             |                                                                                 |
| 7        | Straight length (m)                | =                                                 | 5 m                             |                                                                                 |
| 8        | Static head (m)                    | =                                                 | 1 m                             |                                                                                 |
| 9        | Velocity Head (v <sup>2</sup> /2g) | =                                                 | 0.14 m                          |                                                                                 |
| 10       |                                    |                                                   |                                 |                                                                                 |
| 11       | <b>Head Loss In Fittings</b>       |                                                   |                                 |                                                                                 |
| 12       |                                    |                                                   |                                 |                                                                                 |
| 13       | Fitting                            | Quantity                                          | Reynolds Factor (k)             | Head Loss (kv²/2g)  0.198 0.057 0.112 0.224 0.096 0.068 0.273 0.000 0.205 1.233 |
| 14       |                                    |                                                   |                                 |                                                                                 |
| 15       | Elbows, 90 deg                     | 5                                                 | 0.29                            | 0.198                                                                           |
| 16       | Elbows, 45 deg                     | 3                                                 | 0.14                            | 0.057                                                                           |
| 17       | Sudden contraction                 | 1                                                 | 0.82                            | 0.112                                                                           |
| 18       | Sudden engl.                       | 1                                                 | 1.64                            | 0.224                                                                           |
| 19       | Tee-90 deg                         | 2                                                 | 0.35                            | 0.096                                                                           |
| 20       | Valves                             | 2                                                 | 0.25                            | 0.068                                                                           |
|          | NRV                                | 1                                                 | \(\frac{\pi}{\sigma_{\sigma}}\) | 0.273                                                                           |
| 22       |                                    | 0                                                 | 0.75                            | 0.000                                                                           |
| 23       | Exit                               | 2                                                 | 0.75                            | 0.205                                                                           |
| 24<br>25 | Total                              |                                                   |                                 | 1.233                                                                           |
| 26       | Friction Loss in Pipes             | ان ا                                              | <b>V</b>                        |                                                                                 |
| 27       | According to the Empirical formu   | lae for the calculation of fr                     | riction loss:                   |                                                                                 |
| 28       | Friction head loss                 | $= 6.78 \text{ (v/s)}^{1.852} \text{(D)}^{-1.16}$ |                                 | <b>0.022</b> m/m                                                                |
| 29       | Thetion head 1055                  | -0.78 (V/S) (D)                                   |                                 | 0.022 111111                                                                    |
| 30       | Therefore friction loss in pipe    | رن.                                               | =                               | <b>0.11</b> m                                                                   |
| 31       | Therefore friction loss in pipe    |                                                   | _                               | <b>0.11</b> III                                                                 |
|          | Total Head Loss (m)                | (Loss in Fittings +                               | =                               | 1.36 m                                                                          |
| 32       |                                    | Friction Loss in pipe)                            |                                 |                                                                                 |
| 33       | c R                                |                                                   |                                 |                                                                                 |
| 34       | Minimum Head Required              | (Total Head Loss +                                | =                               | <b>2.36</b> m                                                                   |
|          |                                    | Static Head)                                      |                                 |                                                                                 |

#### Sheet No. 5 Head Loss Calculation

| 1  | Head loss calculation for          | :                                                | Filtrate tank outlet to   | suction of Backwash pump                                                                      |
|----|------------------------------------|--------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| 2  |                                    |                                                  |                           |                                                                                               |
| 3  | Flow (cum/hr)                      | =                                                | 49.49 m3/                 |                                                                                               |
| 4  | Diameter (mm)                      | =                                                | 100 mm                    |                                                                                               |
| 5  | Hence, velocity (m/sec)            | =                                                | 1.75 m/s                  | ec                                                                                            |
| 6  | Constant C                         | =                                                | 120                       |                                                                                               |
| 7  | Straight length (m)                | =                                                | 5 m                       |                                                                                               |
| 8  | Static head (m)                    | =                                                | 1 m                       |                                                                                               |
| 9  | Velocity Head (v <sup>2</sup> /2g) | =                                                | 0.16 m                    |                                                                                               |
| 10 |                                    |                                                  |                           |                                                                                               |
| 11 | <b>Head Loss In Fittings</b>       |                                                  |                           |                                                                                               |
| 12 |                                    |                                                  |                           |                                                                                               |
| 13 | Fitting                            | Quantity                                         | Reynolds Factor           | 0.181<br>0.066<br>0.137<br>0.273<br>0.055<br>0.078<br>0.000<br>0.000<br>0.117<br><b>0.907</b> |
|    |                                    |                                                  | (k)                       | <b>1</b>                                                                                      |
| 14 |                                    |                                                  |                           |                                                                                               |
| 15 | Elbows, 90 deg                     | 4                                                | 0.29                      | 0.181                                                                                         |
| 16 | Elbows, 45 deg                     | 3                                                | 0.14                      | 0.066                                                                                         |
| 17 | Sudden contraction                 | 1                                                | 0.88                      | 0.137                                                                                         |
| 18 | Sudden engl.                       | 1                                                | 1.75                      | 0.273                                                                                         |
| 19 | Tee-90 deg                         | 1                                                | 0.35                      | 0.055                                                                                         |
| 20 | Valves                             | 2                                                | 0.23                      | 0.078                                                                                         |
| 21 | NRV                                | 0                                                | $\checkmark$ <sup>2</sup> | 0.000                                                                                         |
| 22 | Strainer (approximate)             | 0                                                | 75                        | 0.000                                                                                         |
| 23 | Exit                               | 1                                                | 0.75                      | 0.117                                                                                         |
| 24 | Total                              | <u>~</u> X                                       | · <b>X</b>                | 0.907                                                                                         |
| 25 | E. C. I. D.                        | ,40                                              |                           |                                                                                               |
| 26 | Friction Loss in Pipes             |                                                  | 1                         |                                                                                               |
| 27 | According to the Empirical formula | <b>1</b>                                         |                           |                                                                                               |
| 28 | Friction head loss                 | $=6.78 \text{ (vQ)}^{-1.16} \text{ (D)}^{-1.16}$ | 5 =                       | <b>0.039</b> m/m                                                                              |
| 29 |                                    | $\sim$                                           |                           |                                                                                               |
| 30 | Therefore friction loss in pipe    | <b>4</b> , 5                                     | =                         | <b>0.20</b> m                                                                                 |
| 31 |                                    | 2                                                |                           |                                                                                               |
| 32 | Total Head Loss (m)                | (Loss in Fittings +                              | =,                        | 1.14 m                                                                                        |
|    | - Ala                              | Friction Loss in pipe)                           |                           |                                                                                               |
| 33 | , S,                               | /m + 111 11                                      |                           | 2.14                                                                                          |
| 34 | Minimum Head Required              | (Total Head Loss +                               | =                         | <b>2.14</b> m                                                                                 |
|    |                                    | Static Head)                                     |                           |                                                                                               |

#### Sheet No. 6 Head Loss Calculation

| 1      | Head loss calculation for           | :                                                | В                                                                        | ackwash Pump to MMF             |
|--------|-------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|---------------------------------|
| 2      |                                     |                                                  | 40.40 2                                                                  | Л                               |
| 3      | Flow (cum/hr)                       | =                                                | 49.49 m3                                                                 |                                 |
| 4      | Diameter (mm)                       | =                                                | 100 mm<br>1.75 m/s                                                       |                                 |
| 5      | Hence, velocity (m/sec) Constant C  | =                                                |                                                                          | sec                             |
| 6<br>7 |                                     | = =                                              | 120<br>20 m                                                              |                                 |
| 8      | Straight length (m) Static head (m) | =                                                | 3 m                                                                      |                                 |
|        | * *                                 |                                                  |                                                                          |                                 |
| 9      | Velocity Head (v <sup>2</sup> /2g)  | =                                                | 0.16 m                                                                   |                                 |
| 10     | H II I File                         |                                                  |                                                                          |                                 |
| 11     | Head Loss In Fittings               |                                                  |                                                                          |                                 |
| 12     | E'44'                               | 0                                                | Damalda Esadan                                                           |                                 |
| 13     | Fitting                             | Quantity                                         | Reynolds Factor (k)  0.29 0.14 0.88 1.75 0.35 0.25 75 0.75  iction loss: | Head Loss (kv <sup>2</sup> /2g) |
| 14     |                                     |                                                  | (K)                                                                      |                                 |
| 15     | Elbows, 90 deg                      | 5                                                | 0.29                                                                     | 0.226                           |
| 16     | Elbows, 45 deg                      | 4                                                | 0.25                                                                     | 0.087                           |
| 17     | Sudden contraction                  | 2                                                | 0.88                                                                     | 0.273                           |
| 18     | Sudden engl.                        | 2                                                | 1.75                                                                     | 0.547                           |
| 19     | Tee-90 deg                          | 2                                                | 0.35                                                                     | 0.109                           |
| 20     | Valves                              | 2                                                | 0.25                                                                     | 0.078                           |
| 21     | NRV                                 | 1                                                |                                                                          | 0.312                           |
| 22     | Strainer (approximate)              | 0                                                | 4,75                                                                     | 0.000                           |
| 23     | Exit                                | 1                                                | 0.75                                                                     | 0.117                           |
| 24     | Total                               |                                                  |                                                                          | 1.751                           |
| 25     |                                     | 4                                                |                                                                          |                                 |
| 26     | Friction Loss in Pipes              | (C)                                              |                                                                          |                                 |
| 27     | According to the Empirical formul   | ae for the calculation of fr                     | iction loss:                                                             |                                 |
| 28     | Friction head loss                  | $=6.78 \text{ (v/C)}^{1.852} \text{(D)}^{-1.16}$ | 5 =                                                                      | <b>0.039</b> m/m                |
| 29     |                                     |                                                  |                                                                          |                                 |
| 30     | Therefore friction loss in pipe     | $\sim$ 20                                        | =                                                                        | <b>0.79</b> m                   |
| 31     | 1 1                                 | , C                                              |                                                                          |                                 |
|        | Total Head Loss (m)                 | Coss in Fittings +                               | =                                                                        | 2.58 m                          |
| 32     | · · ·                               | Friction Loss in pipe)                           |                                                                          |                                 |
| 33     |                                     | 11/                                              |                                                                          |                                 |
| 34     | Minimum Head Required               | (Total Head Loss +                               | =                                                                        | <b>5.58</b> m                   |
| 34     |                                     | Static Head)                                     |                                                                          |                                 |
|        |                                     |                                                  |                                                                          |                                 |

#### Sheet No.7 Head Loss Calculation

| 1  | Head loss calculation for        | :                                                                     | Back wash                                                                    | drain from MMF unit to brine pit |
|----|----------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------|
| 3  | Flow (cum/hr)                    | =                                                                     | 49.49 m3                                                                     | /hr                              |
| 4  | Diameter (mm)                    | =                                                                     | 100 mn                                                                       |                                  |
| 5  | Hence, velocity (m/sec)          | =                                                                     | 1.75 m/s                                                                     | sec                              |
| 6  | Constant C                       | =                                                                     | 120                                                                          |                                  |
| 7  | Straight length (m)              | =                                                                     | 25 m                                                                         |                                  |
| 8  | Static head (m)                  | =                                                                     | 1 m                                                                          |                                  |
| 9  | Velocity Head $(v^2/2g)$         | =                                                                     | 0.16 m                                                                       |                                  |
| 10 | , (5)                            |                                                                       |                                                                              |                                  |
| 11 | Head Loss In Fittings            |                                                                       |                                                                              |                                  |
| 12 | J                                |                                                                       |                                                                              |                                  |
| 13 | Fitting                          | Quantity                                                              | Reynolds Factor (k)  0.29 0.14 0.88 1.75 0.35 0.25 75 0.75  iction loss: 5 = | Head Loss (kv <sup>2</sup> /2g)  |
| 14 |                                  |                                                                       |                                                                              | ,\O'\                            |
| 15 | Elbows, 90 deg                   | 6                                                                     | 0.29                                                                         | 0.272                            |
| 16 | Elbows, 45 deg                   | 0                                                                     | 0.14                                                                         | 0.000                            |
| 17 | Sudden contraction               | 0                                                                     | 0.88                                                                         | 0.000                            |
| 18 | Sudden engl.                     | 1                                                                     | 1.75                                                                         | 0.273                            |
| 19 | Tee-90 deg                       | 2                                                                     | 0.35                                                                         | 0.109                            |
| 20 | Valves                           | 3                                                                     | 0.25                                                                         | 0.117                            |
| 21 | NRV                              | 0                                                                     | (2)                                                                          | 0.000                            |
| 22 | Strainer (approximate)           | 0                                                                     | <b>4</b> 75                                                                  | 0.000                            |
| 23 | Exit                             | 1                                                                     | 0.75                                                                         | 0.117                            |
| 24 | Total                            |                                                                       | X                                                                            | 0.889                            |
| 25 |                                  | ~                                                                     |                                                                              |                                  |
| 26 | Friction Loss in Pipes           | 70,                                                                   |                                                                              |                                  |
| 27 | According to the Empirical formu | lae for the calculation of fri                                        | iction loss:                                                                 | 0.000                            |
| 28 | Friction head loss               | $=6.78 \text{ (v/C)}^{1.852} \text{(D)}^{-1.16}$                      | 5 =                                                                          | <b>0.039</b> m/m                 |
| 29 |                                  | ⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨                                |                                                                              |                                  |
| 30 | Therefore friction loss in pipe  | $\sim$ | =                                                                            | <b>0.99</b> m                    |
| 31 |                                  |                                                                       |                                                                              |                                  |
| 32 | Total Head Loss (m)              | Coss in Fittings + Friction Loss in pipe)                             | =                                                                            | 1.91 m                           |
| 33 |                                  | 1 Hetton Loss in pipe)                                                |                                                                              |                                  |
|    | Minimum Head Required            | (Total Head Loss +                                                    | =                                                                            | <b>2.91</b> m                    |
| 34 | 1                                | Static Head)                                                          |                                                                              |                                  |

#### Sheet No. 8 Head loss Calculation

| 1        | Head loss calculation for                                                   | :                                               | Cartridge filter outlet to | o High Pressure pump suction                                                           |
|----------|-----------------------------------------------------------------------------|-------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------|
| 2        |                                                                             |                                                 |                            |                                                                                        |
| 3        | Flow (cum/hr)                                                               | =                                               | 104.17 m3/h                | nr                                                                                     |
| 4        | Diameter (mm)                                                               | =                                               | 150 mm                     |                                                                                        |
| 5        | Hence, velocity (m/sec)                                                     | =                                               | 1.64 m/se                  | c                                                                                      |
| 6        | Constant C                                                                  | =                                               | 120                        |                                                                                        |
| 7        | Straight length (m)                                                         | =                                               | 10 m                       |                                                                                        |
| 8        | Static head (m)                                                             | =                                               | 1 m                        |                                                                                        |
| 9        | Velocity Head (v <sup>2</sup> /2g)                                          | =                                               | 0.14 m                     |                                                                                        |
| 10       |                                                                             |                                                 |                            |                                                                                        |
| 11       | Head Loss In Fittings                                                       |                                                 |                            |                                                                                        |
| 12       |                                                                             |                                                 |                            |                                                                                        |
| 13       | Fitting                                                                     | Quantity                                        | Reynolds Factor            | 0.317<br>0.038<br>0.112<br>0.224<br>0.000<br>0.034<br>0.273<br>0.000<br>0.102<br>1.101 |
| 10       |                                                                             |                                                 | (k)                        |                                                                                        |
| 14       |                                                                             |                                                 |                            | , G                                                                                    |
| 15       | Elbows, 90 deg                                                              | 8                                               | 0.29                       | 0.317                                                                                  |
| 16       | Elbows, 45 deg                                                              | 2                                               | 0.14                       | 0.038                                                                                  |
| 17       | Sudden contraction                                                          | 1                                               | 0.82                       | 0.112                                                                                  |
| 18       | Sudden engl.                                                                | 1                                               | 1.64                       | 0.224                                                                                  |
| 19       | Tee-90 deg                                                                  | 0                                               | 0.35                       | 0.000                                                                                  |
| 20       | Valves                                                                      | 1                                               |                            | 0.034                                                                                  |
| 21       | NRV                                                                         | 1                                               | $\checkmark^2$             | 0.273                                                                                  |
| 22       | Strainer (approximate)                                                      | 0                                               | 75                         | 0.000                                                                                  |
| 23       | Exit                                                                        | 1                                               | 0.75                       | 0.102                                                                                  |
| 24       | Total                                                                       | <u>~</u> X                                      | <b>X</b>                   | 1.101                                                                                  |
| 25       | Edular Landa Biran                                                          | ,40                                             |                            |                                                                                        |
| 26<br>27 | Friction Loss in Pipes According to the Empirical formul                    | la a fam tha aglavlation of fu                  | iatian laga.               |                                                                                        |
| 28       | Friction head loss                                                          | - 1 i                                           | 5 =                        | <b>0.022</b> m/m                                                                       |
|          | Thetion head loss                                                           | $= 6.78 \text{ (vO)}^{-852} \text{(D)}^{-1.16}$ | _                          | 0.022 111/111                                                                          |
| 29       |                                                                             | $\mathcal{O}_{10}$                              | =                          | 0.22                                                                                   |
| 30<br>31 | Therefore friction loss in pipe                                             | 10                                              | =                          | <b>0.22</b> m                                                                          |
| 31       | Total Hand Logg (m)                                                         | (Loss in Fittings +                             | =                          | 1.34 m                                                                                 |
| 32       | Total Head Loss (m)                                                         | Friction Loss in pipe)                          | _                          | 1.34 III                                                                               |
| 33       | Therefore friction loss in pipe  Total Head Loss (m)  Minimum Head Required | riicuon Loss in pipe)                           |                            |                                                                                        |
| 00       | Minimum Head Required                                                       | (Total Head Loss +                              | =                          | <b>2.34</b> m                                                                          |
| 34       | Minimum ricad Required                                                      | Static Head)                                    |                            | <b>2.37</b> III                                                                        |
|          |                                                                             | Static Head)                                    |                            |                                                                                        |

#### Sheet No. 9 Head Loss Calculation

| 1        | Head loss calculation for          | :                                                | Flush tank outlet to Suc              | ction of flushpump                                                            |
|----------|------------------------------------|--------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|
| 2        |                                    |                                                  |                                       |                                                                               |
| 3        | Flow (cum/hr)                      | =                                                | 120 m3/l                              | hr                                                                            |
| 4        | Diameter (mm)                      | =                                                | 150 mm                                |                                                                               |
| 5        | Hence, velocity (m/sec)            | =                                                | 1.89 m/se                             | ec                                                                            |
| 6        | Constant C                         | =                                                | 120                                   |                                                                               |
| 7        | Straight length (m)                | =                                                | 3 m                                   |                                                                               |
| 8        | Static head (m)                    | =                                                | 1 m                                   |                                                                               |
| 9        | Velocity Head (v <sup>2</sup> /2g) | =                                                | 0.18 m                                |                                                                               |
| 10       |                                    |                                                  |                                       |                                                                               |
| 11       | Head Loss In Fittings              |                                                  |                                       |                                                                               |
| 12       |                                    |                                                  |                                       |                                                                               |
| 13       | Fitting                            | Quantity                                         | Reynolds Factor                       | 0.263<br>0.000<br>0.171<br>0.000<br>0.045<br>0.000<br>0.000<br>0.000<br>0.000 |
|          |                                    |                                                  | (k)                                   | NO.                                                                           |
| 14       |                                    | _                                                |                                       |                                                                               |
| 15       | Elbows, 90 deg                     | 5                                                | 0.29                                  | 0.263                                                                         |
| 16       | Elbows, 45 deg                     | 0                                                | 0.14                                  | 0.000                                                                         |
| 17       | Sudden contraction                 | 1                                                | 0.94                                  | 0.171                                                                         |
| 18       | Sudden engl.                       | 0                                                | 1.89                                  | 0.000                                                                         |
| 19<br>20 | Tee-90 deg<br>Valves               | 0<br>1                                           | 0.33                                  | 0.000                                                                         |
| 21       | NRV                                | 0                                                | <b>(4)</b>                            | 0.043                                                                         |
| 22       | Strainer (approximate)             | 0                                                | 75                                    | 0.000                                                                         |
| 23       | Exit                               | 1                                                | 0.75                                  | 0.136                                                                         |
| 24       | Total                              |                                                  | · · · · · · · · · · · · · · · · · · · | 0.615                                                                         |
| 25       |                                    | . (``                                            | 75<br>0.75                            | *****                                                                         |
| 26       | Friction Loss in Pipes             |                                                  |                                       |                                                                               |
| 27       | According to the Empirical formul  | lae for the calculation of fr                    | riction loss:                         |                                                                               |
| 28       | Friction head loss                 | $= 6.78 \text{ (v/O)}^{-852} \text{(D)}^{-1.10}$ | 65 =                                  | <b>0.028</b> m/m                                                              |
| 29       |                                    |                                                  |                                       |                                                                               |
| 30       | Therefore friction loss in pipe    | , <b>6</b> 3                                     | =                                     | <b>0.08</b> m                                                                 |
| 31       | 1 1                                | . 🗸                                              |                                       |                                                                               |
| 20       | Total Head Loss (m)                | (Loss in Fittings +                              | =                                     | 0.73 m                                                                        |
| 32       |                                    | Friction Loss in pipe)                           |                                       |                                                                               |
| 33       | Sk                                 | ,                                                |                                       |                                                                               |
| 34       | Minimum Head Required              | (Total Head Loss +                               | =                                     | <b>1.73</b> m                                                                 |
| O-7      |                                    | Static Head)                                     |                                       |                                                                               |

#### Sheet No. 10 Head Loss Calculation

| 1  | Head loss calculation for          | :                                                | Fl                  | ush pump to RO suction                                                                 |
|----|------------------------------------|--------------------------------------------------|---------------------|----------------------------------------------------------------------------------------|
| 2  |                                    |                                                  |                     |                                                                                        |
| 3  | Flow (cum/hr)                      | =                                                | 120 m3              | /hr                                                                                    |
| 4  | Diameter (mm)                      | =                                                | 150 mm              |                                                                                        |
| 5  | Hence, velocity (m/sec)            | =                                                | 1.89 m/s            | ec                                                                                     |
| 6  | Constant C                         | =                                                | 120                 |                                                                                        |
| 7  | Straight length (m)                | =                                                | 3 m                 |                                                                                        |
| 8  | Static head (m)                    | =                                                | 2 m                 |                                                                                        |
| 9  | Velocity Head (v <sup>2</sup> /2g) | =                                                | 0.18 m              |                                                                                        |
| 10 |                                    |                                                  |                     |                                                                                        |
| 11 | Head Loss In Fittings              |                                                  |                     |                                                                                        |
| 12 |                                    |                                                  |                     |                                                                                        |
| 13 | Fitting                            | Quantity                                         | Reynolds Factor (k) | 0.368<br>0.051<br>0.171<br>0.342<br>0.127<br>0.181<br>0.725<br>0.000<br>0.272<br>2.238 |
| 14 |                                    |                                                  |                     |                                                                                        |
| 15 | Elbows, 90 deg                     | 7                                                | 0.29                | 0.368                                                                                  |
| 16 | Elbows, 45 deg                     | 2                                                | 0.14                | 0.051                                                                                  |
| 17 | Sudden contraction                 | 1                                                | 0.94                | 0.171                                                                                  |
| 18 | Sudden engl.                       | 1                                                | 1.89                | 0.342                                                                                  |
| 19 | Tee-90 deg                         | 2                                                | 0.35                | 0.127                                                                                  |
| 20 | Valves                             | 4                                                | 0.25                | 0.181                                                                                  |
| 21 | NRV                                | 2                                                | , 2)                | 0.725                                                                                  |
| 22 | Strainer (approximate)             | 0                                                | 75                  | 0.000                                                                                  |
| 23 | Exit                               | 2                                                | 0.75                | 0.272                                                                                  |
| 24 | Total                              |                                                  | X                   | 2.238                                                                                  |
| 25 |                                    |                                                  | <b>,</b>            |                                                                                        |
| 26 | Friction Loss in Pipes             | .40                                              | •                   |                                                                                        |
| 27 | According to the Empirical formula | lae for the calculation of fr                    | riction loss:       |                                                                                        |
| 28 | Friction head loss                 | $=6.78 \text{ (v/C)}^{1.852} \text{(D)}^{-1.16}$ | 55 =                | <b>0.028</b> m/m                                                                       |
| 29 |                                    | ⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨           |                     |                                                                                        |
| 30 | Therefore friction loss in pipe    | $O_3$                                            | =                   | <b>0.08</b> m                                                                          |
| 31 |                                    |                                                  |                     |                                                                                        |
| 32 | Total Head Loss (m)                | (Loss in Fittings + Friction Loss in pipe)       | =                   | 2.35 m                                                                                 |
| 33 |                                    | rifiction Loss in pipe)                          |                     |                                                                                        |
| 34 | Minimum Head Required 5            | (Total Head Loss +                               | =                   | <b>4.35</b> m                                                                          |
|    |                                    | Static Head)                                     |                     |                                                                                        |

#### Sheet No. 11 Head Loss Calculation

| 1  | Head loss calculation for          | :                                                |                     | RO To Brine pit                                                                        |
|----|------------------------------------|--------------------------------------------------|---------------------|----------------------------------------------------------------------------------------|
| 2  |                                    |                                                  |                     |                                                                                        |
| 3  | Flow (cum/hr)                      | =                                                | 120 m3/             | /hr                                                                                    |
| 4  | Diameter (mm)                      | =                                                | 150 mm              | ı                                                                                      |
| 5  | Hence, velocity (m/sec)            | =                                                | 1.89 m/s            | ec                                                                                     |
| 6  | Constant C                         | =                                                | 120                 |                                                                                        |
| 7  | Straight length (m)                | =                                                | 25 m                |                                                                                        |
| 8  | Static head (m)                    | =                                                | 1 m                 |                                                                                        |
| 9  | Velocity Head (v <sup>2</sup> /2g) | =                                                | 0.18 m              |                                                                                        |
| 10 |                                    |                                                  |                     |                                                                                        |
| 11 | Head Loss In Fittings              |                                                  |                     |                                                                                        |
| 12 |                                    |                                                  |                     |                                                                                        |
| 13 | Fitting                            | Quantity                                         | Reynolds Factor (k) | 0.210<br>0.000<br>0.000<br>0.000<br>0.000<br>0.045<br>0.363<br>0.000<br>0.136<br>0.754 |
| 14 |                                    |                                                  | , ,                 |                                                                                        |
| 15 | Elbows, 90 deg                     | 4                                                | 0.29                | 0.210                                                                                  |
| 16 | Elbows, 45 deg                     | 0                                                | 0.14                | 0.000                                                                                  |
| 17 | Sudden contraction                 | 0                                                | 0.94                | 0.000                                                                                  |
| 18 | Sudden engl.                       | 0                                                | 1.89                | 0.000                                                                                  |
| 19 | Tee-90 deg                         | 0                                                | 0.35                | 0.000                                                                                  |
| 20 | Valves                             | 1                                                | 0.25                | 0.045                                                                                  |
| 21 | NRV                                | 1                                                | 2)                  | 0.363                                                                                  |
| 22 | Strainer (approximate)             | 0                                                | 75                  | 0.000                                                                                  |
| 23 | Exit                               | 1                                                | 0.75                | 0.136                                                                                  |
| 24 | Total                              | •                                                | X                   | 0.754                                                                                  |
| 25 |                                    | c X                                              | <b>,</b>            |                                                                                        |
| 26 | Friction Loss in Pipes             | .40                                              |                     |                                                                                        |
| 27 | According to the Empirical formul  | ae for the calculation of fr                     | iction loss:        |                                                                                        |
| 28 | Friction head loss                 | $=6.78 \text{ (v/C)}^{1.852} \text{(D)}^{-1.16}$ | 5 =                 | <b>0.028</b> m/m                                                                       |
| 29 |                                    | $\sim$ .                                         |                     |                                                                                        |
| 30 | Therefore friction loss in pipe    | $O_{25}$                                         | =                   | <b>0.71</b> m                                                                          |
| 31 |                                    | <b>∠</b> .                                       |                     |                                                                                        |
| 32 | Total Head Loss (m)                | Loss in Fittings + Friction Loss in pipe)        | =                   | 1.49 m                                                                                 |
| 33 | W.                                 | Triction Loss in pipe)                           |                     |                                                                                        |
| 34 | Minimum Head Required              | (Total Head Loss +                               | =                   | <b>2.49</b> m                                                                          |
| 04 |                                    | Static Head)                                     |                     |                                                                                        |

#### Sheet No. 12 Head Loss Calculation

| 1        | Head loss calculation for          | :                                               | CIP tank outlet to Suction | on of CIP pump                                                                         |
|----------|------------------------------------|-------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------|
| 2        |                                    |                                                 |                            |                                                                                        |
| 3        | Flow (cum/hr)                      | =                                               | 120 m3/hr                  |                                                                                        |
| 4        | Diameter (mm)                      | =                                               | 100 mm                     |                                                                                        |
| 5        | Hence, velocity (m/sec)            | =                                               | 4.24 m/sec                 |                                                                                        |
| 6        | Constant C                         | =                                               | 120                        |                                                                                        |
| 7        | Straight length (m)                | =                                               | 3 m                        |                                                                                        |
| 8        | Static head (m)                    | =                                               | 1 m                        |                                                                                        |
| 9        | Velocity Head (v <sup>2</sup> /2g) | =                                               | 0.92 m                     |                                                                                        |
| 10       |                                    |                                                 |                            |                                                                                        |
| 11       | <b>Head Loss In Fittings</b>       |                                                 |                            |                                                                                        |
| 12       |                                    |                                                 |                            |                                                                                        |
| 13       | Fitting                            | Quantity                                        | Reynolds Factor            | 0.263<br>0.000<br>0.385<br>0.000<br>0.000<br>0.045<br>0.000<br>0.000<br>0.000<br>0.136 |
|          |                                    |                                                 | (k)                        |                                                                                        |
| 14<br>15 | E11 00 d                           | 5                                               | 0.20                       | 0.263                                                                                  |
| 16       | Elbows, 90 deg<br>Elbows, 45 deg   | 5<br>0                                          | 0.29                       | 0.203                                                                                  |
| 17       | Sudden contraction                 | 1                                               | 2.12                       | 0.000                                                                                  |
| 18       | Sudden engl.                       | 0                                               | 4 24                       | 0.383                                                                                  |
| 19       | Tee-90 deg                         | 0                                               | 0.35.                      | 0.000                                                                                  |
| 20       | Valves                             | 1                                               | 0.35                       | 0.000                                                                                  |
| 21       | NRV                                | 0                                               | 1.2                        | 0.000                                                                                  |
| 22       | Strainer (approximate)             | 0                                               | 75                         | 0.000                                                                                  |
| 23       | Exit                               | 1                                               | 0.75                       | 0.136                                                                                  |
| 24       | Total                              | /                                               |                            | 0.829                                                                                  |
| 25       |                                    | $\langle C \rangle$                             | 75<br>0.75                 |                                                                                        |
| 26       | Friction Loss in Pipes             |                                                 |                            |                                                                                        |
| 27       | According to the Empirical formula | ae for the calculation of fr                    | riction loss:              |                                                                                        |
| 28       | Friction head loss                 | $= 6.78 \text{ (v/6)}^{852} \text{(D)}^{-1.16}$ | 55 =                       | <b>0.203</b> m/m                                                                       |
| 29       |                                    | $cO_{\chi}$                                     |                            |                                                                                        |
| 30       | Therefore friction loss in pipe    | 3                                               | =                          | <b>0.61</b> m                                                                          |
| 31       |                                    |                                                 |                            |                                                                                        |
| 32       | Total Head Loss (m)                | (Loss in Fittings +                             | =                          | 1.64 m                                                                                 |
| 32       | 21                                 | Friction Loss in pipe)                          |                            |                                                                                        |
| 33       | SK                                 |                                                 |                            |                                                                                        |
| 34       | Minimum Head Required              | (Total Head Loss +                              | =                          | <b>2.64</b> m                                                                          |
|          |                                    | Static Head)                                    |                            |                                                                                        |

#### Sheet No. 13 1Head Loss Calculation- 1

| 1  | Head loss calculation for          | :                                                 | CIP Pur                                                                 | np to Cleaning Cartridge Fitler |
|----|------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|
| 2  |                                    |                                                   |                                                                         |                                 |
| 3  | Flow (cum/hr)                      | =                                                 | 120 m <sup>3</sup>                                                      |                                 |
| 4  | Diameter (mm)                      | =                                                 | 150 mr                                                                  |                                 |
| 5  | Hence, velocity (m/sec)            | =                                                 | 1.89 m/                                                                 | sec                             |
| 6  | Constant C                         | =                                                 | 120                                                                     |                                 |
| 7  | Straight length (m)                | =                                                 | 5 m                                                                     |                                 |
| 8  | Static head (m)                    | =                                                 | 1.5 m                                                                   |                                 |
| 9  | Velocity Head (v <sup>2</sup> /2g) | =                                                 | 0.18 m                                                                  |                                 |
| 10 |                                    |                                                   |                                                                         |                                 |
| 11 | <b>Head Loss In Fittings</b>       |                                                   |                                                                         |                                 |
| 12 |                                    |                                                   |                                                                         |                                 |
| 13 | Fitting                            | Quantity                                          | Reynolds Factor (k)  0.29 0.14 0.94 1.89 0.35 0.25 75 0.75 iction loss: | Head Loss (kv <sup>2</sup> /2g) |
| 14 |                                    |                                                   |                                                                         | ,O'                             |
| 15 | Elbows, 90 deg                     | 4                                                 | 0.29                                                                    | 0.210                           |
| 16 | Elbows, 45 deg                     | 0                                                 | 0.14                                                                    | 0.000                           |
| 17 | Sudden contraction                 | 0                                                 | 0.94                                                                    | 0.000                           |
| 18 | Sudden engl.                       | 1                                                 | 1.89                                                                    | 0.342                           |
| 19 | Tee-90 deg                         | 0                                                 | 0.35                                                                    | 0.000                           |
| 20 | Valves                             | 2                                                 | 0.25                                                                    | 0.091                           |
| 21 | NRV                                | 1                                                 |                                                                         | 0.363                           |
| 22 | Strainer (approximate)             | 0                                                 | <b>4</b> 75                                                             | 0.000                           |
| 23 | Exit                               | 0                                                 | 0.75                                                                    | 0.000                           |
| 24 | Total                              |                                                   |                                                                         | 1.006                           |
| 25 |                                    | _<                                                | $\sim$                                                                  |                                 |
| 26 | Friction Loss in Pipes             | 1C)                                               |                                                                         |                                 |
| 27 | According to the Empirical formula | lae for the calculation of fr                     | iction loss:                                                            |                                 |
| 28 | Friction head loss                 | $= 6.78 \text{ (v/C)}^{1.852} \text{(D)}^{-1.16}$ | 55 =                                                                    | <b>0.028</b> m/m                |
| 29 |                                    |                                                   |                                                                         |                                 |
| 30 | Therefore friction loss in pipe    | <b>5</b> 5                                        | =                                                                       | <b>0.14</b> m                   |
| 31 | 1.1                                | , C                                               |                                                                         |                                 |
| 32 | Total Head Loss (m)                | Coss in Fittings + Friction Loss in pipe)         | =                                                                       | 1.18 m                          |
| 33 |                                    | 1 Henon Loss in pipe)                             |                                                                         |                                 |
| 34 | Minimum Head Required              | (Total Head Loss +<br>Static Head)                | =                                                                       | <b>2.68</b> m                   |

#### Sheet No.14 1Head Loss Calculation- 1

| 1  | Head loss calculation for          | :                                                 | Cleanin                                                                 | g cartridge filter to RO system |
|----|------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|
| 2  |                                    |                                                   |                                                                         |                                 |
| 3  | Flow (cum/hr)                      | =                                                 | 120 m3                                                                  |                                 |
| 4  | Diameter (mm)                      | =                                                 | 150 mn                                                                  |                                 |
| 5  | Hence, velocity (m/sec)            | =                                                 | 1.89 m/s                                                                | sec                             |
| 6  | Constant C                         | =                                                 | 120                                                                     |                                 |
| 7  | Straight length (m)                | =                                                 | 5 m                                                                     |                                 |
| 8  | Static head (m)                    | =                                                 | 1.5 m                                                                   |                                 |
| 9  | Velocity Head $(v^2/2g)$           | =                                                 | 0.18 m                                                                  |                                 |
| 10 |                                    |                                                   |                                                                         |                                 |
| 11 | <b>Head Loss In Fittings</b>       |                                                   |                                                                         |                                 |
| 12 |                                    |                                                   |                                                                         |                                 |
| 13 | Fitting                            | Quantity                                          | Reynolds Factor (k)  0.29 0.14 0.94 1.89 0.35 0.25 75 0.75 iction loss: | Head Loss (kv <sup>2</sup> /2g) |
| 14 |                                    |                                                   | ,                                                                       | ,O'                             |
| 15 | Elbows, 90 deg                     | 4                                                 | 0.29                                                                    | 0.210                           |
| 16 | Elbows, 45 deg                     | 0                                                 | 0.14                                                                    | 0.000                           |
| 17 | Sudden contraction                 | 0                                                 | 0.94                                                                    | 0.000                           |
| 18 | Sudden engl.                       | 1                                                 | 1.89                                                                    | 0.342                           |
| 19 | Tee-90 deg                         | 0                                                 | 0.35                                                                    | 0.000                           |
| 20 | Valves                             | 2                                                 | 0.25                                                                    | 0.091                           |
| 21 | NRV                                | 1                                                 | 2                                                                       | 0.363                           |
| 22 | Strainer (approximate)             | 0                                                 | <b>4</b> 75                                                             | 0.000                           |
| 23 | Exit                               | 0                                                 | 0.75                                                                    | 0.000                           |
| 24 | Total                              |                                                   |                                                                         | 1.006                           |
| 25 |                                    | 4                                                 | $\triangleright$                                                        |                                 |
| 26 | Friction Loss in Pipes             | (C)                                               |                                                                         |                                 |
| 27 | According to the Empirical formula | lae for the calculation of fr                     | iction loss:                                                            |                                 |
| 28 | Friction head loss                 | $= 6.78 \text{ (v/C)}^{1.852} \text{(D)}^{-1.16}$ | i5 =                                                                    | <b>0.028</b> m/m                |
| 29 |                                    |                                                   |                                                                         |                                 |
| 30 | Therefore friction loss in pipe    | 5                                                 | =                                                                       | <b>0.14</b> m                   |
| 31 | 1 1                                | , 0                                               |                                                                         |                                 |
| 32 | Total Head Loss (m)                | Coss in Fittings + Friction Loss in pipe)         | =                                                                       | 1.18 m                          |
| 33 | . 4                                | 1 Henon Loss in pipe)                             |                                                                         |                                 |
| 34 | Minimum Head Required              | (Total Head Loss +<br>Static Head)                | =                                                                       | <b>2.68</b> m                   |
|    |                                    | *                                                 |                                                                         |                                 |

#### Sheet No. 15 Head Loss Calculation

| 1  | Head loss calculation for          | :                                               | Recirculation line from | m RO system to Chem cleaning tank                                                               |
|----|------------------------------------|-------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------|
| 2  |                                    |                                                 |                         |                                                                                                 |
| 3  | Flow (cum/hr)                      | =                                               | 120 m3                  | /hr                                                                                             |
| 4  | Diameter (mm)                      | =                                               | 150 mm                  | 1                                                                                               |
| 5  | Hence, velocity (m/sec)            | =                                               | 1.89 m/s                | ec                                                                                              |
| 6  | Constant C                         | =                                               | 120                     |                                                                                                 |
| 7  | Straight length (m)                | =                                               | 10 m                    |                                                                                                 |
| 8  | Static head (m)                    | =                                               | 1 m                     |                                                                                                 |
| 9  | Velocity Head (v <sup>2</sup> /2g) | =                                               | 0.18 m                  |                                                                                                 |
| 10 | , ()                               |                                                 |                         |                                                                                                 |
| 11 | Head Loss In Fittings              |                                                 |                         |                                                                                                 |
| 12 | G                                  |                                                 |                         |                                                                                                 |
| 40 | Fitting                            | Quantity                                        | Reynolds Factor         | 0.210<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.091<br>0.000<br>0.000<br>0.136<br>0.437 |
| 13 | _                                  | •                                               | (k)                     | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                         |
| 14 |                                    |                                                 |                         |                                                                                                 |
| 15 | Elbows, 90 deg                     | 4                                               | 0.29                    | 0.210                                                                                           |
| 16 | Elbows, 45 deg                     | 0                                               | 0.14                    | 0.000                                                                                           |
| 17 | Sudden contraction                 | 0                                               | 0.94                    | 0.000                                                                                           |
| 18 | Sudden engl.                       | 0                                               | 1.89                    | 0.000                                                                                           |
| 19 | Tee-90 deg                         | 0                                               | 0.35                    | 0.000                                                                                           |
| 20 | Valves                             | 2                                               | 02)                     | 0.091                                                                                           |
| 21 | NRV                                | 0                                               | $\sqrt{2}$              | 0.000                                                                                           |
| 22 | Strainer (approximate)             | 0                                               | 75                      | 0.000                                                                                           |
| 23 | Exit                               | 1                                               | 0.75                    | 0.136                                                                                           |
| 24 | Total                              | ~ <b>&lt;</b>                                   | <b>Y</b>                | 0.437                                                                                           |
| 25 |                                    | 40.                                             |                         |                                                                                                 |
| 26 | Friction Loss in Pipes             |                                                 |                         |                                                                                                 |
| 27 | According to the Empirical formu   | iac for the calculation of in                   | cuon ioss.              |                                                                                                 |
| 28 | Friction head loss                 | $=6.78 \text{ (vC)}^{1.852} \text{(D)}^{-1.16}$ | 5 =                     | <b>0.028</b> m/m                                                                                |
| 29 |                                    | ςŌ,                                             |                         |                                                                                                 |
| 30 | Therefore friction loss in pipe    | 10                                              | =                       | <b>0.28</b> m                                                                                   |
| 31 |                                    |                                                 |                         |                                                                                                 |
| 32 | Total Head Loss (m)                | (Loss in Fittings +                             | =                       | 0.75 m                                                                                          |
| 32 |                                    | Friction Loss in pipe)                          |                         |                                                                                                 |
| 33 | 5                                  |                                                 |                         |                                                                                                 |
| 34 | Minimum Head Required              | (Total Head Loss +<br>Static Head)              | =                       | 1.75 m                                                                                          |

Static Head)

### BRINE REJECT SYSTEM DESIGN CALCULATIONS

MMF Backwash 49.49 m3/hr = Brine RO 62.50 m3/hr

9 m3/E

SAMPLE COPY. EXCEL FILE ON PAID SECTION TO 4.44 m3/day Total Waste Water dischare per day **1549.49** m3/Day

Total Waste Water Discharge per day from the PROPOSED PLANT with 10% margin

### **DOSING CALCULATIONS**

| I      | <b>Design of Pre chlorination - RO</b>                                                                                                                                                                                                                                                                                                    | upstream         |    |                                        |           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|----------------------------------------|-----------|
| 1      | Feed Flow                                                                                                                                                                                                                                                                                                                                 | =                |    | $111.87 \text{ m}^3/\text{hr}$         |           |
| 2      | Pre – Chlorine dose                                                                                                                                                                                                                                                                                                                       | =                |    | 2.00 mg/l                              |           |
| 3      | % Solution                                                                                                                                                                                                                                                                                                                                | =                |    | 20.00 %                                |           |
| 4      | Chlorine rate                                                                                                                                                                                                                                                                                                                             | =                |    | 223.73 gm/hr                           |           |
| 5      | Hypo chlorite Rate - 12 %                                                                                                                                                                                                                                                                                                                 | =                |    | 1864.44 gm/hr                          |           |
| 6      | Solution Rate reqd                                                                                                                                                                                                                                                                                                                        | =                |    | 9.32 l/hr                              | @ 2.4 bar |
| 7      | Dosing Pump Cap                                                                                                                                                                                                                                                                                                                           | =                |    | 6.00 l/hr                              | @ 6.2 bar |
| 8      | Dosing Stroke adj                                                                                                                                                                                                                                                                                                                         | =                |    | 155.37 %                               |           |
| 9      | Dosing Solution reqd per day                                                                                                                                                                                                                                                                                                              | =                |    | 223.73 lit                             |           |
| 10     | Dosing tank capacity provided                                                                                                                                                                                                                                                                                                             | =                | *  | 100.00 lit                             |           |
| 11     | Solution preparation frequency                                                                                                                                                                                                                                                                                                            | =                |    | 17/1/2                                 |           |
| 77     |                                                                                                                                                                                                                                                                                                                                           |                  |    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |           |
| II     | Design of Coagulant - RO upstr                                                                                                                                                                                                                                                                                                            | eam              |    | <b>60</b>                              |           |
| 1      | Feed Flow                                                                                                                                                                                                                                                                                                                                 | =                |    | $111.87 \text{ m}^3/\text{hr}$         |           |
| 2      | Coagulant dose                                                                                                                                                                                                                                                                                                                            | =                |    | 5.00 mg/l                              |           |
| 2      | % Solution                                                                                                                                                                                                                                                                                                                                | =                |    | 20.00 %                                |           |
| 3      | Coagulant rate                                                                                                                                                                                                                                                                                                                            | =                | 4  | 559.33 gm/hr                           |           |
| 4      | Ferric Chloride Rate - 33 %                                                                                                                                                                                                                                                                                                               | =                | V  | 1694.95 gm/hr                          | O 2 41    |
| 5      | Solution Rate requ                                                                                                                                                                                                                                                                                                                        |                  | •  | 8.47 l/hr                              | @ 2.4 bar |
| 6      | Dosing Pump Cap                                                                                                                                                                                                                                                                                                                           | (C) <del>=</del> |    | 6.00 l/hr                              | @ 6.2 bar |
| /      | Dosing Stroke adj                                                                                                                                                                                                                                                                                                                         |                  |    | 141.25 %                               |           |
| 8      | Dosing Solution requiper day                                                                                                                                                                                                                                                                                                              | 7,0 =            | *  | 203.39 lit                             |           |
| 10     | Solution propagation frequency                                                                                                                                                                                                                                                                                                            | <b>₹</b>         | •• | 100.00 III                             |           |
| 10     | Solution preparation frequency                                                                                                                                                                                                                                                                                                            | <u> </u>         |    | 12 nr                                  |           |
| 777    | Design of Coagulant - RO upstr Feed Flow Coagulant dose % Solution Coagulant rate Ferric Chloride Rate - 33 % Solution Rate reqd Dosing Pump Cap Dosing Stroke adj Dosing Solution reqd per day Dosing tank capacity provided Solution preparation frequency  Design of SMBS Dosing Feed Flow Pre Chlorine dose Sodium Metabisulpite dose |                  |    |                                        |           |
| Ш      | Design of SMBS Dosing                                                                                                                                                                                                                                                                                                                     |                  |    | 111.05 3                               |           |
| 1      | Feed Flow                                                                                                                                                                                                                                                                                                                                 | =                |    | $111.87 \text{ m}^3/\text{hr}$         |           |
| 2      | Pre Chlorine dose 5                                                                                                                                                                                                                                                                                                                       | =                |    | 2.00 mg/l                              |           |
| 3      | Sodium Metabisulpite dose                                                                                                                                                                                                                                                                                                                 | =                | *  | 5.00 mg/l                              |           |
| 4      | 70 Solution                                                                                                                                                                                                                                                                                                                               | _                | *  | 10.00 /0                               |           |
| 5      | Dosing Rate                                                                                                                                                                                                                                                                                                                               | =                |    | 559.33 gm/hr                           |           |
| 6      | SMBS Rate - 65 %                                                                                                                                                                                                                                                                                                                          |                  |    | 860.51 gm/hr                           | @ 2 2 han |
| 7      | Solution Rate                                                                                                                                                                                                                                                                                                                             | =                | *  | 8.61 1/hr<br>6.00 1/hr                 | @ 3.3 bar |
| 8<br>9 | Dosing pump cap Dosing stroke adj.                                                                                                                                                                                                                                                                                                        | =                | •  | 6.00 i/nr<br>143.42 %                  | @ 6.2 bar |
| 10     | Dosing stroke adj.  Dosing solution reqd. per day                                                                                                                                                                                                                                                                                         | =                |    | 206.52 lit                             |           |
| 11     | Dosing solution requ. per day  Dosing tank capacity provided                                                                                                                                                                                                                                                                              | =                | *  | 200.32 III<br>100.00 lit               |           |
| 12     | Solution preparation frequency                                                                                                                                                                                                                                                                                                            | =                |    | 11.62 hr                               |           |
| 14     | Solution preparation frequency                                                                                                                                                                                                                                                                                                            | _                |    | 11.02 III                              |           |

### **DOSING CALCULATIONS**

| IV  | <b>Design of Antiscalant Dosing</b>       |             |    |                                                                                                                                                   |           |
|-----|-------------------------------------------|-------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1   | Feed Flow                                 | =           |    | $111.87 \text{ m}^3/\text{hr}$                                                                                                                    |           |
| 2   | Antiscalant dose                          | =           | *  | 5.00 mg/l                                                                                                                                         |           |
| 3   | % Solution                                | =           | *  | 6.00 %                                                                                                                                            |           |
| 4   | Dosing rate                               | =           |    | 559.33 gm/hr                                                                                                                                      |           |
| 5   | Antiscalant Rate - 100 %                  |             |    | 559.33 gm/hr                                                                                                                                      |           |
| 6   | Solution Rate                             | =           |    | 9.32 l/hr                                                                                                                                         | @ 3.3 bar |
| 7   | Dosing pump cap                           | =           |    | 6.00 l/hr                                                                                                                                         | @ 6.2 bar |
| 8   | Dosing stoke adj.                         | =           |    | 155.37 %                                                                                                                                          |           |
| 9   | Dosing solution reqd. per day             | =           |    | 223.73 lit                                                                                                                                        |           |
| 10  | Dosing tank capacity provide              | =           |    | 100.00 lit                                                                                                                                        |           |
| _11 | Solution preparation frequency            | =           |    | 10.75 hr                                                                                                                                          |           |
|     |                                           |             |    |                                                                                                                                                   |           |
| V   | <b>Design of Post Chlorination Dosing</b> |             |    | 41.67 m <sup>3</sup> /hr<br>2.00 mg/l<br>10.00 %<br>83.33 gm/hr<br>694.44 gm/hr<br>6.94 l/hr<br>6.00 l/hr<br>115.74 %<br>166.67 lit<br>100.00 lit |           |
| 1   | Product Flow                              | =           |    | $41.67 \text{ m}^3/\text{hr}$                                                                                                                     |           |
| 2   | Post – Chlorine dose                      | =           |    | 2.00 mg/l                                                                                                                                         |           |
| 3   | % Solution                                | =           | (  | 10.00 %                                                                                                                                           |           |
| 4   | Chlorine rate                             | =           | .4 | 83.33 gm/hr                                                                                                                                       |           |
| 5   | Hypochlorite Rate                         | = 2         |    | 694.44 gm/hr                                                                                                                                      |           |
| 6   | Solution Rate                             | <b>∠</b> ₹` | •  | 6.94 l/hr                                                                                                                                         | @ 3.3 bar |
| 7   | Dosing pump cap                           | خ×ز         |    | 6.00 l/hr                                                                                                                                         | @ 6.2 bar |
| 8   | Dosing stroke adj.                        | =           |    | 115.74 %                                                                                                                                          |           |
| 9   | Post Dosing solution reqd per day         | =           |    | 166.67 lit                                                                                                                                        |           |
| 10  | Dosing tank capacity provided             | =           |    | 100.00 lit                                                                                                                                        |           |
| 11  | Solution preparation frequency            | =           |    | 14.40 hr                                                                                                                                          |           |
|     |                                           |             |    |                                                                                                                                                   |           |
| VI  | Design of Alkali Dosing                   |             |    |                                                                                                                                                   |           |
| 1   | Product Flow                              | =           |    | $41.67 \text{ m}^3/\text{hr}$                                                                                                                     |           |
| 2   | Dosage                                    | =           | *  | 2.00 mg/l                                                                                                                                         |           |
| 3   | % Solution                                | =           | *  | 2.00 %                                                                                                                                            |           |
| 4   | Dosing rate                               | =           |    | 83.33 gm/hr                                                                                                                                       |           |
| 5   | Alkali Rate %                             | =           |    | 166.67 gm/hr                                                                                                                                      |           |
| 6   | Solution Rate                             | =           |    | 8.33 l/hr                                                                                                                                         | @ 3.3 bar |
| 7   | Dosing pump cap                           | =           |    | 6.00 l/hr                                                                                                                                         | @ 6.2 bar |
| 8   | Dosing stoke adj.                         | =           |    | 138.89 %                                                                                                                                          |           |
| 9   | Dosing solution reqd. per day             | =           |    | 200.00 lit                                                                                                                                        |           |
| 10  | Dosing tank capacity provide              | =           |    | 100.00 lit                                                                                                                                        |           |
| 11  | Solution preparation frequency            | =           |    | 12.00 hr                                                                                                                                          |           |
|     |                                           |             |    |                                                                                                                                                   |           |

|                           |                                    |                                           |                      | PIPE S                                  | SERVI                                                         | CE &                               | SIZIN           | G DET                                | AILS          |                |                    |                                       |                  |                    |
|---------------------------|------------------------------------|-------------------------------------------|----------------------|-----------------------------------------|---------------------------------------------------------------|------------------------------------|-----------------|--------------------------------------|---------------|----------------|--------------------|---------------------------------------|------------------|--------------------|
|                           |                                    |                                           | _                    |                                         |                                                               | _                                  |                 | _                                    | _             |                |                    |                                       |                  |                    |
|                           | 1                                  | 2                                         | 3                    | 4                                       | 5                                                             | 6                                  | 7               | 8                                    | 9             | 10             | 11                 | 12                                    | 13               | 14                 |
| SERVICE FLUID             | Borewell pump to Raw Water<br>Tank | Raw water tank to MF Feed<br>Pump Suction | MMF Feed pump to MMF | MMF outlet to Cartridge filter<br>Inlet | Cartridge filter outlet to High<br>Pressure Pump & PX Suction | High Pressure pump suction<br>line | PX suction line | Migh Pressure pump<br>discharge line | PX disconline | Brine disposar | Flush pump suction | Flush pump discharge to RO<br>Modules | CIP Pump suction | CIP Pump discharge |
| Flow m3/hr                | 55.93                              | 111.9                                     | 111.9                | 104.2                                   | 104.2                                                         | 43.94                              | 62.50           | 9.87                                 | 9.11          | 62.50          | #####              | 120.0                                 | 120.0            | 120                |
| Press. Bar                | 2.5                                | 4.3                                       | 4.3                  | 1.3                                     | 1.2                                                           | 1.0                                | 1.0             | 41.0                                 | 41.0          | 38.5           | 0.17               | 1.9                                   | 0.3              | 2.8                |
| Pipe Size<br>(mm).        | 150                                | 150                                       | 150                  | 150                                     | 150                                                           | 100                                | 100             | 50                                   | 50            | 100            | 150                | 150                                   | 100              | 150                |
| Pipe Size<br>Required(in) | 6                                  | 6                                         | 6                    | 187<br>187                              | 6                                                             | 4                                  | 4               | 2                                    | 2             | 4              | 6                  | 6                                     | 4                | 6                  |
| MOC - PIPE                | HDPE                               | A C                                       | N)<br>)<br>)<br>)    | ) ONAN                                  | OVAU                                                          | UPVC                               | UPVC            | Duplex SS                            | Duplex SS     | DVQU           | UPVC               | DVG                                   | DVC              | UPVC               |

#### LIST OF DRIVES

| SI. | Description         |      | Q     | ty.   |       | Capacity of pump | Total discharge<br>head | Starter    | Make                 | Model    | MOC       |
|-----|---------------------|------|-------|-------|-------|------------------|-------------------------|------------|----------------------|----------|-----------|
| No. | •                   | Duty | St/By | Store | Total |                  |                         |            |                      |          |           |
|     |                     | Nos  | Nos   | Nos   | Nos   | m3/hr            | m                       |            |                      |          |           |
| 1   | Well Pump           | 2    | 1     | 0     | 3     | 55.93333333      | 25                      | DOL        | Grundfos             | SP       | SS 904 L  |
| 2   | Feed Water pump     | 1    | 1     | 0     | 2     | 115              | 43                      | VFD        | Ampco                | NB       | DSS-2205  |
| 3   | Backwash Pump       | 1    | 0     | 1     | 2     | 160              | 21                      | Star delta | Tundofss             | NB       | DSS-2205  |
| 4   | High Pressure pump  | 1    | 0     | 1     | 2     | 43.9             | 720                     | VFD (      | Grundfos             | BME      | SS 904L   |
| 5   | PX Booster pump     | 1    | 0     | 1     | 2     | 60.2             | 72                      | VFD        | ERI PX booster model | HP-1253  | DSS-CD3MC |
| 6   | Flush pump          | 1    | 0     | 1     | 2     | 75.00            | 30                      | DO!        | Ampco                | Z series | DSS-2205  |
| 7   | CIP Pump            | 1    | 0     | 1     | 2     | 75.00            | 30                      |            | Ampco                | Z series | DSS-2205  |
| 8   | Air Scouring blower | 1    | 0     | 0     | 1     | 274.00           | 5                       | OVDOL      | Mapro                | CL42/21  | CI/MS     |
| 9   | Dosing Pumps        | 13   | 13    | 0     | 26    | Var              | rious                   | DOL        | Jesco                | •        | PP/PVDF   |

SAMPLE COPY. EXCEL FILE

#### POWER CONSUMPTION OF RO PLANT EQUIPMENTS

| SI.<br>No. | Description          |      | Q     |       |                        | Capacity of pump | Total discharge<br>head | Pump<br>efficiency | BKW      | Motor<br>efficiency | Couplig<br>loss | Power consumpti on | Working<br>Hours /<br>Day | Power consumption | Power requirement |
|------------|----------------------|------|-------|-------|------------------------|------------------|-------------------------|--------------------|----------|---------------------|-----------------|--------------------|---------------------------|-------------------|-------------------|
|            |                      | Duty | St/By | Store | ore Total os Nos m3/hr |                  |                         |                    |          |                     |                 | OII                | Бау                       |                   |                   |
|            |                      | Nos  | Nos   | Nos   | Nos                    | m3/hr            | m                       | %                  | kw       | %                   | ×.              | kw                 | hr                        | kwhrperday        | KW                |
| 1          | Feed Water pump      | 1    | 1     | 0     | 2                      | 115              | 43                      | 75.0%              | 18.07    | 87%                 | 98%             | 21.19              | 24.00                     | 508.58            | 21.19             |
|            | Backwash Pump        | 1    | 0     | 1     | 2                      | 160              | 21                      | 68.0%              | 13.46    | 87%                 | 98%             | 15.78              | 1.00                      | 15.78             | 15.78             |
| 2          | High Pressure pump   | 1    | 0     | 1     | 2                      | 44               | 720                     | 73.0%              | 118.02   | 87%                 | 98%             | 138.42             | 24.00                     | 3322.13           | 138.42            |
| 3          | PX Booster pump      | 1    | 0     | 1     | 2                      | 60               | 72                      | 90.0%              | 13.12    | 91 %                | 98%             | 14.71              | 24.00                     | 353.13            | 14.71             |
| 4          | Flush pump           | 1    | 0     | 1     | 2                      | 75               | 30                      | 67.0%              | 9.15     | 87%                 | 98%             | 10.73              | 0.00                      | 0.00              | 10.73             |
| 5          | CIP Pump             | 1    | 0     | 1     | 2                      | 75               | 30                      | 67.0%              | 9.16     | 87%                 | 98%             | 10.73              | 0.0000                    | 0.00              | 0.00              |
| 6          | Air Scouring blower  | 1    | 0     | 0     | 1                      | 274              | 5                       | -                  |          | -                   | -               | -                  | -                         | 0.00              | -                 |
| 7          | Dosing Pumps         | 13   | 13    | 0     | 26                     | Various          | 0                       | -                  |          |                     |                 |                    |                           |                   |                   |
| 8          | Instrumentation Load |      |       |       |                        |                  |                         |                    | 7        |                     |                 | 0.50               | 24.00                     | 0.00              | 0.00              |
|            |                      |      |       | _     |                        | TOTAL POWI       | ER CONSUMPTION          | ON C               | <b>\</b> |                     |                 |                    |                           | 4199.63           | 200.84            |

1000 4.20

4.20 kwhr/m3

| SI.<br>No. | Description |      | Q     | ty.   |       | Capacity of pump | Total discharge |               |   | Pump<br>efficiency | BKW   | Motor<br>efficiency | Couplig loss | Power consumpti on | Working<br>Hours /<br>Day | Power consumption | Power requirement |
|------------|-------------|------|-------|-------|-------|------------------|-----------------|---------------|---|--------------------|-------|---------------------|--------------|--------------------|---------------------------|-------------------|-------------------|
|            |             | Duty | St/By | Store | Total |                  |                 | $\mathcal{A}$ |   |                    |       |                     |              | OII                | Day                       |                   |                   |
|            |             | Nos  | Nos   | Nos   | Nos   | m3/hr            | <b>\</b>        | Z             | n | %                  | kw    | %                   | %            | kw                 | hr                        | kwhrperday        | KW                |
| 1          | Well Pump   | 2    | 1     | 0     | 3     | 56               | 11              | 5             | 0 | 74.0%              | 10.29 | 82%                 | 99%          | 12.68              | 18.00                     | 456.41            | 25.36             |

Pump efficiency is considered on a conservative side

25.36



Notes: